讓你瞬間萌比的35個python小技巧

今天在看python算法的時候,看到一篇關於python的小技巧。瞬間萌比了,原來python也能夠這樣玩,太神奇了。萌比的是原來這麼簡單的東西本身都不知道,雖然會寫。廢話很少說了,開始上菜。python

一、拆箱算法

>>> a,b,c = 1,2,3
>>> a,b,c
(1, 2, 3)
>>> a,b,c = [1,2,3]
>>> a,b,c
(1, 2, 3)
>>> a,b,c = (2 * i + 1 for i in range(3))
>>> a,b,c
(1, 3, 5)
>>> a,(b,c),d = [1,(2,3),4]
>>> a
1
>>> b
2
>>> c
3
>>> d
4

二、拆箱變量交換json

>>> a,b,c = 1,2,3
>>> a,b,c = b,c,a
>>> a,b,c
(2, 3, 1)

三、擴展拆箱(只兼容python3)app

>>> a, *b, c = [1, 2, 3, 4, 5]
>>> a
1
>>> b
[2, 3, 4]
>>> c
5

四、負數索引dom

>>> a = [1,2,3,4,5,6,7,8,9,0]
>>> a[-1]
0
>>> a[-3]
8

五、切割列表ui

>>> a = [1,2,3,4,5,6,7,8,9,0]
>>> a[2:6]
[3, 4, 5, 6]

六、負數索引切割列表spa

>>> a = [1,2,3,4,5,6,7,8,9,]
>>> a[-4:-3]
[6]
>>> a[-4:-7]
[]
>>> a[-7:-4]
[3, 4, 5]

七、指定不長切割列表orm

>>> a=[1,2,3,4,5,6,7,8,9,0]
>>> a[::3]
[1, 4, 7, 0]
>>> a[::2]
[1, 3, 5, 7, 9]
>>> a[2:8:2]
[3, 5, 7]
>>> a[:2:8]
[1]

八、負數步長切割列表對象

>>> a=[1,2,3,4,5,6,7,8,9,10,11,12,13,14]
>>> a[::-3]
[14, 11, 8, 5, 2]
>>> a[::-5]
[14, 9, 4]
>>> a[-2:-3:-4]
[13]

九、列表切割賦值blog

>>> a=[1,2,3,4,5]
>>> a[2:3]
[3]
>>> a[2:3]=[0,0]
>>> a
[1, 2, 0, 0, 4, 5]
>>> a[1:1]
[]
>>> a[1:1]=[8,9]
>>> a
[1, 8, 9, 2, 0, 0, 4, 5]
>>> a[1:-1]
[8, 9, 2, 0, 0, 4]
>>> a[1:-1]=[]
>>> a
[1, 5]

十、命名列表切割方式

>>> a=[1,2,3,4,5]
>>> LASTTHREE = slice(-3,None)
>>> LASTTHREE
slice(-3, None, None)
>>> a[LASTTHREE]
[3, 4, 5]

十一、列表以及迭代器的壓縮和解壓

>>> a=[1,2,3,4,5]
>>> b=['a', 'b', 'c']
>>> z=zip(a,b)
>>> z
[(1, 'a'), (2, 'b'), (3, 'c')]
>>> zip(*z)
[(1, 2, 3), ('a', 'b', 'c')]

十二、列表相鄰元素壓縮器

>>> a=[1,2,3,4,5]
>>> zip(*([iter(a)] * 2))
[(1, 2), (3, 4)]
>>> a=[1,2,3,4,5,6]
>>> zip(*([iter(a)] * 2))
[(1, 2), (3, 4), (5, 6)]
>>> group_adjacent=lambda a, k:zip(*([iter(a)] * k))
>>> group_adjacent(a,3)
[(1, 2, 3), (4, 5, 6)]
>>> group_adjacent(a,2)
[(1, 2), (3, 4), (5, 6)]
>>> group_adjacent(a,1)
[(1,), (2,), (3,), (4,), (5,), (6,)]
>>> zip(a[::2], a[1::2])
[(1, 2), (3, 4), (5, 6)]
>>> zip(a[::3], a[1::3], a[2::3])
[(1, 2, 3), (4, 5, 6)]
>>> group_adjacent=lambda a, k:zip(*(a[i::k] for i in range(k)))
>>> group_adjacent(a, 3)                                    
[(1, 2, 3), (4, 5, 6)]
>>> group_adjacent(a, 2)
[(1, 2), (3, 4), (5, 6)]
>>> group_adjacent(a, 1)
[(1,), (2,), (3,), (4,), (5,), (6,)]

1三、在列表中用壓縮器和迭代器滑動取值窗口

>>> def n_grams(a,n):
...     z=[iter(a[i:]) for i in range(n)]
...     return zip(*z)
... 
>>> a=[1,2,3,4,5,6,7,8,9]
>>> n_grams(a,3)
[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6), (5, 6, 7), (6, 7, 8), (7, 8, 9)]
>>> n_grams(a,2)
[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9)]
>>> n_grams(a,4)
[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6), (4, 5, 6, 7), (5, 6, 7, 8), (6, 7, 8, 9)]

1四、用壓縮器反轉字典

>>> m={'a':1, 'b':2,'c':3,'d':4}
>>> m.items()
[('a', 1), ('c', 3), ('b', 2), ('d', 4)]
>>> zip(m.values(), m.keys())
[(1, 'a'), (3, 'c'), (2, 'b'), (4, 'd')]
>>> mi=dict(zip(m.values(), m.keys()))
>>> mi
{1: 'a', 2: 'b', 3: 'c', 4: 'd'}

1五、列表展開

>>> import itertools
>>> a = [[1, 2], [3, 4], [5, 6]]
>>> list(itertools.chain.from_iterable(a))
[1, 2, 3, 4, 5, 6]
>>> sum(a, [])
[1, 2, 3, 4, 5, 6]
>>> [x for l in a for x in l]
[1, 2, 3, 4, 5, 6]
>>> a = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
>>> [x for l1 in a for l2 in l1 for x in l2]
[1, 2, 3, 4, 5, 6, 7, 8]
>>> a = [1, 2, [3, 4], [[5, 6], [7, 8]]]
>>> flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]
>>> flatten(a)
[1, 2, 3, 4, 5, 6, 7, 8]

1六、生成器表達式

>>> g=(x ** 2 for x in xrange(10))
>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> sum(x ** 3 for x in xrange(10))
2025
>>> sum(x ** 3 for x in xrange(10) if x % 3 == 1)
408

1七、字典推導

>>> m = {x: x ** 2 for x in range(5)}
>>> m
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}
>>> m = {x: 'B' + str(x) for x in range(10)}
>>> m
{0: 'B0', 1: 'B1', 2: 'B2', 3: 'B3', 4: 'B4', 5: 'B5', 6: 'B6', 7: 'B7', 8: 'B8', 9: 'B9'}

1八、用字典推導反轉字典

>>> m={'a':1,'b':2,'c':3,'d':4}
>>> m
{'a': 1, 'c': 3, 'b': 2, 'd': 4}
>>> {v:k for k,v in m.items()}
{1: 'a', 2: 'b', 3: 'c', 4: 'd'}

1九、命名元組

>>> import collections
>>> point = collections.namedtuple('point', ['x', 'y'])
>>> p = point(x=1.0, y=2.0)
>>> p.x
1.0
>>> p.y
2.0

20、繼承命名元組

>>> import collections                                      
>>> class Point(collections.namedtuple('PointBase', ['x', 'y'])):
...     __slots__ =()
...     def __add__(self, other):                         
...             return Point(x=self.x + other.x, y=self.y + other.y)
... 
>>> p = Point(x=1.0, y=2.0)
>>> q = Point(x=2.0, y=3.0)
>>> p + q
PointBase(x=3.0, y=5.0)

2一、操做集合

>>> A = {1, 2, 3, 4}
>>> A
set([1, 2, 3, 4])
>>> B = {3, 4, 5, 6, 7}
>>> B
set([3, 4, 5, 6, 7])
>>> A | B
set([1, 2, 3, 4, 5, 6, 7])
>>> A & B
set([3, 4])
>>> A - B
set([1, 2])
>>> B - A
set([5, 6, 7])
>>> A ^ B
set([1, 2, 5, 6, 7])
>>> (A ^ B) == ((A - B) | (B - A))
True

2二、操做多重集合

>>> A = collections.Counter([1, 2, 2])
>>> B = collections.Counter([2, 2, 3])
>>> A
Counter({2: 2, 1: 1})
>>> B
Counter({2: 2, 3: 1})
>>> A | B
Counter({2: 2, 1: 1, 3: 1})
>>> A & B
Counter({2: 2})
>>> A + B
Counter({2: 4, 1: 1, 3: 1})
>>> A - B
Counter({1: 1})
>>> B - A
Counter({3: 1})

2三、統計在可迭代器中最常出現的元素

>>> A = collections.Counter([1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7])
>>> A
Counter({3: 4, 1: 2, 2: 2, 4: 1, 5: 1, 6: 1, 7: 1})
>>> A.most_common(1)
[(3, 4)]
>>> A.most_common(2)
[(3, 4), (1, 2)]
>>> A.most_common(3)
[(3, 4), (1, 2), (2, 2)]

2四、兩端均可操做的隊列

>>> Q = collections.deque()
>>> Q.append(1)
>>> Q.appendleft(2)
>>> Q.extend([3, 4])
>>> Q.extendleft([5, 6])
>>> Q
deque([6, 5, 2, 1, 3, 4])
>>> Q.pop()
4
>>> Q.popleft()
6
>>> Q
deque([5, 2, 1, 3])
>>> Q.rotate(3)
>>> Q
deque([2, 1, 3, 5])
>>> Q.rotate(-3)
>>> Q
deque([5, 2, 1, 3])

2五、有最大長度的雙端隊列

>>> last_three = collections.deque(maxlen=3)
>>> for i in xrange(10):
...     last_three.append(i)
...     print ', '.join(str(x) for x in last_three)
...
0
0, 1
0, 1, 2
1, 2, 3
2, 3, 4
3, 4, 5
4, 5, 6
5, 6, 7
6, 7, 8
7, 8, 9

2六、可排序詞典

>>> m = dict((str(x), x) for x in range(10))
>>> print ', '.join(m.keys())
1, 0, 3, 2, 5, 4, 7, 6, 9, 8
>>> m = collections.OrderedDict((str(x), x) for x in range(10))
>>> print ', '.join(m.keys())
0, 1, 2, 3, 4, 5, 6, 7, 8, 9
>>> m = collections.OrderedDict((str(x), x) for x in range(10, 0, -1))
>>> print ', '.join(m.keys())
10, 9, 8, 7, 6, 5, 4, 3, 2, 1

2七、默認詞典

>>> m = dict()
>>> m['a']
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
KeyError: 'a'
>>>
>>> m = collections.defaultdict(int)
>>> m['a']
0
>>> m['b']
0
>>> m = collections.defaultdict(str)
>>> m['a']
''
>>> m['b'] += 'a'
>>> m['b']
'a'
>>> m = collections.defaultdict(lambda: '[default value]')
>>> m['a']
'[default value]'
>>> m['b']
'[default value]'

2八、默認字典的簡單樹狀表達

>>> import json
>>> tree = lambda: collections.defaultdict(tree)
>>> root = tree()
>>> root['menu']['id'] = 'file'
>>> root['menu']['value'] = 'File'
>>> root['menu']['menuitems']['new']['value'] = 'New'
>>> root['menu']['menuitems']['new']['onclick'] = 'new();'
>>> root['menu']['menuitems']['open']['value'] = 'Open'
>>> root['menu']['menuitems']['open']['onclick'] = 'open();'
>>> root['menu']['menuitems']['close']['value'] = 'Close'
>>> root['menu']['menuitems']['close']['onclick'] = 'close();'
>>> print json.dumps(root, sort_keys=True, indent=4, separators=(',', ': '))
{
    "menu": {
        "id": "file",
        "menuitems": {
            "close": {
                "onclick": "close();",
                "value": "Close"
            },
            "new": {
                "onclick": "new();",
                "value": "New"
            },
            "open": {
                "onclick": "open();",
                "value": "Open"
            }
        },
        "value": "File"
    }
}

2九、對象到惟一計數的映射

>>> import itertools, collections
>>> value_to_numeric_map = collections.defaultdict(itertools.count().next)
>>> value_to_numeric_map['a']
0
>>> value_to_numeric_map['b']
1
>>> value_to_numeric_map['c']
2
>>> value_to_numeric_map['a']
0
>>> value_to_numeric_map['b']
1

30、最大和最小的幾個列表元素

>>> a = [random.randint(0, 100) for __ in xrange(100)]
>>> heapq.nsmallest(5, a)
[3, 3, 5, 6, 8]
>>> heapq.nlargest(5, a)
[100, 100, 99, 98, 98]

3一、兩個列表的笛卡爾積

>>> for p in itertools.product([1, 2, 3], [4, 5]):
(1, 4)
(1, 5)
(2, 4)
(2, 5)
(3, 4)
(3, 5)
>>> for p in itertools.product([0, 1], repeat=4):
...     print ''.join(str(x) for x in p)
...
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

3二、列表組合和列表元素替代組合

>>> for c in itertools.combinations([1, 2, 3, 4, 5], 3):
...     print ''.join(str(x) for x in c)
...
123
124
125
134
135
145
234
235
245
345
>>> for c in itertools.combinations_with_replacement([1, 2, 3], 2):
...     print ''.join(str(x) for x in c)
...
11
12
13
22
23
33

3三、列表元素排列組合

>>> for p in itertools.permutations([1, 2, 3, 4]):
...     print ''.join(str(x) for x in p)
...
1234
1243
1324
1342
1423
1432
2134
2143
2314
2341
2413
2431
3124
3142
3214
3241
3412
3421
4123
4132
4213
4231
4312
4321

3四、可連接迭代器

>>> a = [1, 2, 3, 4]
>>> for p in itertools.chain(itertools.combinations(a, 2), itertools.combinations(a, 3)):
...     print p
...
(1, 2)
(1, 3)
(1, 4)
(2, 3)
(2, 4)
(3, 4)
(1, 2, 3)
(1, 2, 4)
(1, 3, 4)
(2, 3, 4)
>>> for subset in itertools.chain.from_iterable(itertools.combinations(a, n) for n in range(len(a) + 1))
...     print subset
...
()
(1,)
(2,)
(3,)
(4,)
(1, 2)
(1, 3)
(1, 4)
(2, 3)
(2, 4)
(3, 4)
(1, 2, 3)
(1, 2, 4)
(1, 3, 4)
(2, 3, 4)
(1, 2, 3, 4)

3五、根據文件指定列類聚

>>> import itertools
>>> with open('contactlenses.csv', 'r') as infile:
...     data = [line.strip().split(',') for line in infile]
...
>>> data = data[1:]
>>> def print_data(rows):
...     print '\n'.join('\t'.join('{: <16}'.format(s) for s in row) for row in rows)
...
 
>>> print_data(data)
young               myope                   no                      reduced                 none
young               myope                   no                      normal                  soft
young               myope                   yes                     reduced                 none
young               myope                   yes                     normal                  hard
young               hypermetrope            no                      reduced                 none
young               hypermetrope            no                      normal                  soft
young               hypermetrope            yes                     reduced                 none
young               hypermetrope            yes                     normal                  hard
pre-presbyopic      myope                   no                      reduced                 none
pre-presbyopic      myope                   no                      normal                  soft
pre-presbyopic      myope                   yes                     reduced                 none
pre-presbyopic      myope                   yes                     normal                  hard
pre-presbyopic      hypermetrope            no                      reduced                 none
pre-presbyopic      hypermetrope            no                      normal                  soft
pre-presbyopic      hypermetrope            yes                     reduced                 none
pre-presbyopic      hypermetrope            yes                     normal                  none
presbyopic          myope                   no                      reduced                 none
presbyopic          myope                   no                      normal                  none
presbyopic          myope                   yes                     reduced                 none
presbyopic          myope                   yes                     normal                  hard
presbyopic          hypermetrope            no                      reduced                 none
presbyopic          hypermetrope            no                      normal                  soft
presbyopic          hypermetrope            yes                     reduced                 none
presbyopic          hypermetrope            yes                     normal                  none
 
>>> data.sort(key=lambda r: r[-1])
>>> for value, group in itertools.groupby(data, lambda r: r[-1]):
...     print '-----------'
...     print 'Group: ' + value
...     print_data(group)
...
-----------
Group: hard
young               myope                   yes                     normal                  hard
young               hypermetrope            yes                     normal                  hard
pre-presbyopic      myope                   yes                     normal                  hard
presbyopic          myope                   yes                     normal                  hard
-----------
Group: none
young               myope                   no                      reduced                 none
young               myope                   yes                     reduced                 none
young               hypermetrope            no                      reduced                 none
young               hypermetrope            yes                     reduced                 none
pre-presbyopic      myope                   no                      reduced                 none
pre-presbyopic      myope                   yes                     reduced                 none
pre-presbyopic      hypermetrope            no                      reduced                 none
pre-presbyopic      hypermetrope            yes                     reduced                 none
pre-presbyopic      hypermetrope            yes                     normal                  none
presbyopic          myope                   no                      reduced                 none
presbyopic          myope                   no                      normal                  none
presbyopic          myope                   yes                     reduced                 none
presbyopic          hypermetrope            no                      reduced                 none
presbyopic          hypermetrope            yes                     reduced                 none
presbyopic          hypermetrope            yes                     normal                  none
-----------
Group: soft
young               myope                   no                      normal                  soft
young               hypermetrope            no                      normal                  soft
pre-presbyopic      myope                   no                      normal                  soft
pre-presbyopic      hypermetrope            no                      normal                  soft
presbyopic          hypermetrope            no                      normal                  soft

 尊重勞動者的知識產權,請打上出處:http://python.jobbole.com/63320/

相關文章
相關標籤/搜索