caffemodel的解析

在用caffe作finetune的時候,可能須要對現有的預訓練模型進行調整和修改。經過加載已經訓練好的模型,結合自身網絡結構的特色進行裁剪。如下是讀取caffemodel,並將model中的網絡展現出來。ios

#include <stdio.h>
#include <string.h>
#include <fstream>
#include <iostream>
#include "proto/caffe.pb.h"
using namespace std;
using namespace caffe;
int main(int argc, char* argv[])
{

	caffe::NetParameter msg;
	//經過proto的形式反序列化caffemodel
	fstream input("lenet_iter_10000.caffemodel", ios::in | ios::binary);
	if (!msg.ParseFromIstream(&input))
	{
		cerr << "Failed to parse address book." << endl;
		return -1;
	}
	printf("length = %d\n", length);
	printf("Repeated Size = %d\n", msg.layer_size());

	::google::protobuf::RepeatedPtrField< LayerParameter >* layer = msg.mutable_layer();
	::google::protobuf::RepeatedPtrField< LayerParameter >::iterator it = layer->begin();
	for (; it != layer->end(); ++it)
	{
		cout << it->name() << endl;
		cout << it->type() << endl;
		cout << it->convolution_param().weight_filler().max() << endl;
	}
	return 0;
}
相關文章
相關標籤/搜索