Intel® Movidius™ 神經計算棒(NCS)是個使用USB接口的深度學習設備,比U盤略大,功耗1W,浮點性能可達100GFLOPs。php
100GFLOPs大概是什麼概念呢,i7-8700K有59.26GLOPs,Titan V FP16 有24576GLOPs……(僅供娛樂參考,對比是不一樣精度的)。html
目前NCSDK官方安裝腳本只支持Ubuntu 16.04和Raspbian Stretch,折騰一下在其餘Linux系統運行也是沒問題的,例如我用ArchLinux,大概步驟以下:python
當我順利折騰完以外,才發現AUR是有了現成的ncsdk。linux
安裝完成後改LD_LIBRARY_PATH和PYTHONPATH:git
export LD_LIBRARY_PATH=/opt/movidius/bvlc-caffe/build/install/lib64/:/usr/local/lib/ export PYTHONPATH="${PYTHONPATH}:/opt/movidius/caffe/python"
使用NCS須要把caffe或tensorflow訓練好的模型轉換成NCS支持的格式。由於Keras有TF後端,因此用Keras的模型也是能夠的。這裏以Keras自帶的VGG16爲例:github
from keras.applications import VGG16 from keras import backend as K import tensorflow as tf mn = VGG16() saver = tf.train.Saver() sess = K.get_session() saver.save(sess, "./TF_Model/vgg16")
這裏直接用tf.train.Saver
保存了一個tf模型,而後用mvNCCompile命令進行編譯,須要指定網絡的輸入和輸出節點,-s 12
表示使用12個SHAVE處理器:後端
$ mvNCCompile TF_Model/vgg16.meta -in=input_1 -on=predictions/Softmax -s 12
順利的話就的到一個graph
文件。api
(這裏用了我本身改的TensorFlowParser.py才能用)網絡
mvNCProfile
命令能夠查看模型中每一層使用的內存帶寬、算力,模型調優能夠以此爲參考。session
$ mvNCProfile TF_Model/vgg16.meta -in=input_1 -on=predictions/Softmax -s 12 Detailed Per Layer Profile Bandwidth time # Name MFLOPs (MB/s) (ms) ======================================================================= 0 block1_conv1/Relu 173.4 304.2 8.510 1 block1_conv2/Relu 3699.4 662.6 83.297 2 block1_pool/MaxPool 3.2 831.6 7.366 3 block2_conv1/Relu 1849.7 419.9 33.158 4 block2_conv2/Relu 3699.4 474.2 58.718 5 block2_pool/MaxPool 1.6 923.4 3.317 6 block3_conv1/Relu 1849.7 171.8 43.401 7 block3_conv2/Relu 3699.4 180.6 82.579 8 block3_conv3/Relu 3699.4 179.8 82.921 9 block3_pool/MaxPool 0.8 919.2 1.666 10 block4_conv1/Relu 1849.7 137.3 41.554 11 block4_conv2/Relu 3699.4 169.0 67.442 12 block4_conv3/Relu 3699.4 169.6 67.232 13 block4_pool/MaxPool 0.4 929.7 0.825 14 block5_conv1/Relu 924.8 308.9 20.176 15 block5_conv2/Relu 924.8 318.0 19.594 16 block5_conv3/Relu 924.8 314.9 19.788 17 block5_pool/MaxPool 0.1 888.7 0.216 18 fc1/Relu 205.5 2155.9 90.937 19 fc2/Relu 33.6 2137.2 14.980 20 predictions/BiasAdd 8.2 2645.0 2.957 21 predictions/Softmax 0.0 19.0 0.201 ----------------------------------------------------------------------- Total inference time 750.84 ----------------------------------------------------------------------- Generating Profile Report 'output_report.html'...
能夠看到執行1此VGG16推斷須要750ms,主要時間花在了幾個卷積層,因此這個模型用在實時的視頻分析是不合適的,這時能夠試試其餘的網絡,例如SqueezeNet只要48ms:
Detailed Per Layer Profile Bandwidth time # Name MFLOPs (MB/s) (ms) ======================================================================= 0 data 0.0 78350.0 0.004 1 conv1 347.7 1622.7 8.926 2 pool1 2.6 1440.0 1.567 3 fire2/squeeze1x1 9.3 1214.8 0.458 4 fire2/expand1x1 6.2 155.2 0.608 5 fire2/expand3x3 55.8 476.3 1.783 6 fire3/squeeze1x1 12.4 1457.4 0.509 7 fire3/expand1x1 6.2 152.6 0.618 8 fire3/expand3x3 55.8 478.3 1.776 9 fire4/squeeze1x1 24.8 1022.0 0.730 10 fire4/expand1x1 24.8 176.2 1.093 11 fire4/expand3x3 223.0 389.7 4.450 12 pool4 1.7 1257.7 1.174 13 fire5/squeeze1x1 11.9 780.3 0.476 14 fire5/expand1x1 6.0 154.0 0.341 15 fire5/expand3x3 53.7 359.8 1.314 16 fire6/squeeze1x1 17.9 639.4 0.593 17 fire6/expand1x1 13.4 159.5 0.531 18 fire6/expand3x3 120.9 259.7 2.935 19 fire7/squeeze1x1 26.9 826.1 0.689 20 fire7/expand1x1 13.4 159.7 0.530 21 fire7/expand3x3 120.9 255.2 2.987 22 fire8/squeeze1x1 35.8 727.0 0.799 23 fire8/expand1x1 23.9 164.0 0.736 24 fire8/expand3x3 215.0 191.4 5.677 25 pool8 0.8 1263.8 0.563 26 fire9/squeeze1x1 11.1 585.9 0.388 27 fire9/expand1x1 5.5 154.1 0.340 28 fire9/expand3x3 49.8 283.2 1.664 29 conv10 173.1 335.8 3.400 30 pool10 0.3 676.1 0.477 31 prob 0.0 9.5 0.200 ----------------------------------------------------------------------- Total inference time 48.34 -----------------------------------------------------------------------
有了圖文件,咱們就能夠把它加載到NCS,而後進行推斷:
from mvnc import mvncapi as mvnc ## 枚舉設備 devices = mvnc.EnumerateDevices() ## 打開第一個NCS device = mvnc.Device(devices[0]) device.OpenDevice() ## 讀取圖文件 with open("graph", mode='rb') as f: graphfile = f.read() ## 加載圖 graph = device.AllocateGraph(graphfile)
圖加載加載完成後,就能夠graph.LoadTensor
給它一個輸入,graph.GetResult
獲得結果。
# 從攝像頭獲取圖像 ret, frame = cap.read() # 預處理 img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) img = cv2.resize(img, (224, 224)) img = preprocess_input(img.astype('float32')) # 輸入 graph.LoadTensor(img.astype(numpy.float16), 'user object') # 獲取結果 output, userobj = graph.GetResult() result = decode_predictions(output.reshape(1, 1000))
識別出鼠標:
Kindle和iPod還算類似吧:)
完整的代碼在oraoto/learn_ml/ncs,有MNIST和VGG16的例子。