幾種重要的網絡演化模型算法
包括:隨機網絡,小世界網絡,隨機聚類網絡,無標度網絡,核心-邊緣網絡網絡
隨機網絡:框架
ER隨機網絡模型:給定網格中節點的個數V,網絡中任意兩個點以機率p(p>0)相鏈接。blog
此時,節點的度服從二項分佈(V-1,p),而且隨機網絡的不少重要性質都知足參數爲(V-1,p)的二項分佈。方法
此外,隨機網絡中節點的平均最短軌道距離<d>很小,其大小與網絡的大小呈對數關係,其中<k>爲平均度。im
小世界網絡:技術
一些現實世界的網絡表現出網絡的小世界特性,即大多數節點能夠經過少許的幾步(邊)到達另外一個節點。統計
構造具備小世界性的網絡:img
step1:造成包括V個節點的規則網絡集合
step2:每條邊被隨機從新鏈接,即對任意節點,隨機選擇一個鏈接替換他原來的鏈接。
網絡的小世界特性的最直接的理解是在這種網絡上的信息傳播的速度很是迅速,如病毒傳染網絡。
無標度網絡:
某些網絡中的極少數節點擁有很高的度數,而大部分節點只有很小的度數。這種網絡叫無標度網絡,網絡中節點的度服從冪律分佈,即:
在無標度網絡中,給定標度指數,隨着度數k值的增長,度數爲k的節點個數急劇減小。當度數k值較小時,其分佈機率P(k)較大,當度數k值較大時,分佈機率較小。
網絡的無標度性與網絡受到隨機攻擊的魯棒性緊密相關。
少許關鍵節點(度比較大的節點)的存在,既是無標度網絡的優勢也是缺點。許多學者將無標度網絡描述爲對隨機攻擊具備魯棒性,可是對蓄意攻擊卻極爲脆弱。
無標度網絡的造成是根據節點的優先鏈接法則產生的,優先鏈接意味着某節點的度越大,新加入網絡的節點與其相鏈接的可能性越大。如將鏈接機率定義爲與當前網絡中的節點的度數成比例。
隨機聚類網絡:
社團的節點集合知足一個簡單的條件:屬於同一個社團的節點有許多相互鏈接的邊,而不一樣的社團由相對較少的邊相鏈接。
在隨機聚類網絡的造成中,兩個節點若是屬於同一個社團,它們的鏈接機率爲pin,若是屬於不一樣社團的鏈接機率爲pout。
典型的隨機聚類網絡中,pin值較大,pout值較小,即社團以內的節點鏈接緊密,而社團之間的節點鏈接稀疏。
評價社團檢測技術優劣程度的Girvan-Newman算法就是基於這裏的兩個定義:
表示社團內節點的聯繫程度;表示不一樣社團之間聯繫的緊密程度。
典型的隨機聚類網絡必須知足pout<<pin.
核心-邊緣網絡:
網絡能夠採用局部網絡,全局網絡,中等尺度網絡的方法來描述。網絡理論的一個主要目標是識別大型網絡統計學意義上的主要結構,以便於分析和比較複雜網絡的框架。
在這個目標下,中等尺度網絡結構的識別算法使得咱們可以發現節點和邊在局部網絡以及全局網絡中不明顯的特徵。
經過計算肯定核心-邊緣網絡的結構,劃分哪些節點屬於密集鏈接的核心節點,哪些節點屬於外圍稀疏鏈接的邊緣節點。
網絡的核心機構不只是緊密相連的,並且每每是網絡的中心。
能夠將單個社團看做網絡核心結構的一部分,整個核心結構由多個社團組成,社團之間能夠存在重疊。