1、基礎篇--1.2Java集合-HashMap和ConcurrentHashMap的區別【轉】

 

http://www.importnew.com/28263.htmlhtml

今天發一篇」水文」,可能不少讀者都會表示不理解,不過我想把它做爲併發序列文章中不可缺乏的一塊來介紹。原本覺得花不了多少時間的,不過最終仍是投入了挺多時間來完成這篇文章的。java

網上關於 HashMap 和 ConcurrentHashMap 的文章確實很多,不過缺斤少兩的文章比較多,因此纔想本身也寫一篇,把細節說清楚說透,尤爲像 Java8 中的 ConcurrentHashMap,大部分文章都說不清楚。終歸是但願能下降你們學習的成本,不但願你們處處找各類不是很靠譜的文章,看完一篇又一篇,但是仍是模模糊糊。node

閱讀建議:四節基本上能夠進行獨立閱讀,建議初學者可按照 Java7 HashMap -> Java7 ConcurrentHashMap -> Java8 HashMap -> Java8 ConcurrentHashMap 順序進行閱讀,可適當下降閱讀門檻。數組

閱讀前提:本文分析的是源碼,因此至少讀者要熟悉它們的接口使用,同時,對於併發,讀者至少要知道 CAS、ReentrantLock、UNSAFE 操做這幾個基本的知識,文中不會對這些知識進行介紹。Java8 用到了紅黑樹,不過本文不會進行展開,感興趣的讀者請自行查找相關資料。安全

Java7 HashMap

HashMap 是最簡單的,一來咱們很是熟悉,二來就是它不支持併發操做,因此源碼也很是簡單。多線程

首先,咱們用下面這張圖來介紹 HashMap 的結構。併發

1

這個僅僅是示意圖,由於沒有考慮到數組要擴容的狀況,具體的後面再說。ssh

大方向上,HashMap 裏面是一個數組,而後數組中每一個元素是一個單向鏈表。ide

上圖中,每一個綠色的實體是嵌套類 Entry 的實例,Entry 包含四個屬性:key, value, hash 值和用於單向鏈表的 next。函數

capacity:當前數組容量,始終保持 2^n,能夠擴容,擴容後數組大小爲當前的 2 倍。

loadFactor:負載因子,默認爲 0.75。

threshold:擴容的閾值,等於 capacity * loadFactor

put 過程分析

仍是比較簡單的,跟着代碼走一遍吧。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
public V put(K key, V value) {
     // 當插入第一個元素的時候,須要先初始化數組大小
     if (table == EMPTY_TABLE) {
         inflateTable(threshold);
     }
     // 若是 key 爲 null,感興趣的能夠往裏看,最終會將這個 entry 放到 table[0] 中
     if (key == null )
         return putForNullKey(value);
     // 1. 求 key 的 hash 值
     int hash = hash(key);
     // 2. 找到對應的數組下標
     int i = indexFor(hash, table.length);
     // 3. 遍歷一下對應下標處的鏈表,看是否有重複的 key 已經存在,
     //    若是有,直接覆蓋,put 方法返回舊值就結束了
     for (Entry<K,V> e = table[i]; e != null ; e = e.next) {
         Object k;
         if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
             V oldValue = e.value;
             e.value = value;
             e.recordAccess( this );
             return oldValue;
         }
     }
 
     modCount++;
     // 4. 不存在重複的 key,將此 entry 添加到鏈表中,細節後面說
     addEntry(hash, key, value, i);
     return null ;
}

數組初始化

在第一個元素插入 HashMap 的時候作一次數組的初始化,就是先肯定初始的數組大小,並計算數組擴容的閾值。

1
2
3
4
5
6
7
8
9
10
private void inflateTable( int toSize) {
     // 保證數組大小必定是 2 的 n 次方。
     // 好比這樣初始化:new HashMap(20),那麼處理成初始數組大小是 32
     int capacity = roundUpToPowerOf2(toSize);
     // 計算擴容閾值:capacity * loadFactor
     threshold = ( int ) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1 );
     // 算是初始化數組吧
     table = new Entry[capacity];
     initHashSeedAsNeeded(capacity); //ignore
}

這裏有一個將數組大小保持爲 2 的 n 次方的作法,Java7 和 Java8 的 HashMap 和 ConcurrentHashMap 都有相應的要求,只不過實現的代碼稍微有些不一樣,後面再看到的時候就知道了。

計算具體數組位置

這個簡單,咱們本身也能 YY 一個:使用 key 的 hash 值對數組長度進行取模就能夠了。

1
2
3
4
static int indexFor( int hash, int length) {
     // assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2";
     return hash & (length- 1 );
}

這個方法很簡單,簡單說就是取 hash 值的低 n 位。如在數組長度爲 32 的時候,其實取的就是 key 的 hash 值的低 5 位,做爲它在數組中的下標位置。

添加節點到鏈表中

找到數組下標後,會先進行 key 判重,若是沒有重複,就準備將新值放入到鏈表的表頭。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
void addEntry( int hash, K key, V value, int bucketIndex) {
     // 若是當前 HashMap 大小已經達到了閾值,而且新值要插入的數組位置已經有元素了,那麼要擴容
     if ((size >= threshold) && ( null != table[bucketIndex])) {
         // 擴容,後面會介紹一下
         resize( 2 * table.length);
         // 擴容之後,從新計算 hash 值
         hash = ( null != key) ? hash(key) : 0 ;
         // 從新計算擴容後的新的下標
         bucketIndex = indexFor(hash, table.length);
     }
     // 往下看
     createEntry(hash, key, value, bucketIndex);
}
// 這個很簡單,其實就是將新值放到鏈表的表頭,而後 size++
void createEntry( int hash, K key, V value, int bucketIndex) {
     Entry<K,V> e = table[bucketIndex];
     table[bucketIndex] = new Entry<>(hash, key, value, e);
     size++;
}

這個方法的主要邏輯就是先判斷是否須要擴容,須要的話先擴容,而後再將這個新的數據插入到擴容後的數組的相應位置處的鏈表的表頭。

數組擴容

前面咱們看到,在插入新值的時候,若是當前的 size 已經達到了閾值,而且要插入的數組位置上已經有元素,那麼就會觸發擴容,擴容後,數組大小爲原來的 2 倍。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
void resize( int newCapacity) {
     Entry[] oldTable = table;
     int oldCapacity = oldTable.length;
     if (oldCapacity == MAXIMUM_CAPACITY) {
         threshold = Integer.MAX_VALUE;
         return ;
     }
     // 新的數組
     Entry[] newTable = new Entry[newCapacity];
     // 將原來數組中的值遷移到新的更大的數組中
     transfer(newTable, initHashSeedAsNeeded(newCapacity));
     table = newTable;
     threshold = ( int )Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1 );
}

擴容就是用一個新的大數組替換原來的小數組,並將原來數組中的值遷移到新的數組中。

因爲是雙倍擴容,遷移過程當中,會將原來 table[i] 中的鏈表的全部節點,分拆到新的數組的 newTable[i] 和 newTable[i + oldLength] 位置上。如原來數組長度是 16,那麼擴容後,原來 table[0] 處的鏈表中的全部元素會被分配到新數組中 newTable[0] 和 newTable[16] 這兩個位置。代碼比較簡單,這裏就不展開了。

get 過程分析

相對於 put 過程,get 過程是很是簡單的。

  1. 根據 key 計算 hash 值。
  2. 找到相應的數組下標:hash & (length – 1)。
  3. 遍歷該數組位置處的鏈表,直到找到相等(==或equals)的 key。
1
2
3
4
5
6
7
8
9
public V get(Object key) {
     // 以前說過,key 爲 null 的話,會被放到 table[0],因此只要遍歷下 table[0] 處的鏈表就能夠了
     if (key == null )
         return getForNullKey();
     //
     Entry<K,V> entry = getEntry(key);
 
     return null == entry ? null : entry.getValue();
}

getEntry(key):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
final Entry<K,V> getEntry(Object key) {
     if (size == 0 ) {
         return null ;
     }
 
     int hash = (key == null ) ? 0 : hash(key);
     // 肯定數組下標,而後從頭開始遍歷鏈表,直到找到爲止
     for (Entry<K,V> e = table[indexFor(hash, table.length)];
          e != null ;
          e = e.next) {
         Object k;
         if (e.hash == hash &&
             ((k = e.key) == key || (key != null && key.equals(k))))
             return e;
     }
     return null ;
}

Java7 ConcurrentHashMap

ConcurrentHashMap 和 HashMap 思路是差很少的,可是由於它支持併發操做,因此要複雜一些。

整個 ConcurrentHashMap 由一個個 Segment 組成,Segment 表明」部分「或」一段「的意思,因此不少地方都會將其描述爲分段鎖。注意,行文中,我不少地方用了「槽」來表明一個 segment。

簡單理解就是,ConcurrentHashMap 是一個 Segment 數組,Segment 經過繼承 ReentrantLock 來進行加鎖,因此每次須要加鎖的操做鎖住的是一個 segment,這樣只要保證每一個 Segment 是線程安全的,也就實現了全局的線程安全。

3

concurrencyLevel:並行級別、併發數、Segment 數,怎麼翻譯不重要,理解它。默認是 16,也就是說 ConcurrentHashMap 有 16 個 Segments,因此理論上,這個時候,最多能夠同時支持 16 個線程併發寫,只要它們的操做分別分佈在不一樣的 Segment 上。這個值能夠在初始化的時候設置爲其餘值,可是一旦初始化之後,它是不能夠擴容的。

再具體到每一個 Segment 內部,其實每一個 Segment 很像以前介紹的 HashMap,不過它要保證線程安全,因此處理起來要麻煩些。

初始化

initialCapacity:初始容量,這個值指的是整個 ConcurrentHashMap 的初始容量,實際操做的時候須要平均分給每一個 Segment。

loadFactor:負載因子,以前咱們說了,Segment 數組不能夠擴容,因此這個負載因子是給每一個 Segment 內部使用的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
public ConcurrentHashMap( int initialCapacity,
                          float loadFactor, int concurrencyLevel) {
     if (!(loadFactor > 0 ) || initialCapacity < 0 || concurrencyLevel <= 0 )
         throw new IllegalArgumentException();
     if (concurrencyLevel > MAX_SEGMENTS)
         concurrencyLevel = MAX_SEGMENTS;
     // Find power-of-two sizes best matching arguments
     int sshift = 0 ;
     int ssize = 1 ;
     // 計算並行級別 ssize,由於要保持並行級別是 2 的 n 次方
     while (ssize < concurrencyLevel) {
         ++sshift;
         ssize <<= 1 ;
     }
     // 咱們這裏先不要那麼燒腦,用默認值,concurrencyLevel 爲 16,sshift 爲 4
     // 那麼計算出 segmentShift 爲 28,segmentMask 爲 15,後面會用到這兩個值
     this .segmentShift = 32 - sshift;
     this .segmentMask = ssize - 1 ;
 
     if (initialCapacity > MAXIMUM_CAPACITY)
         initialCapacity = MAXIMUM_CAPACITY;
 
     // initialCapacity 是設置整個 map 初始的大小,
     // 這裏根據 initialCapacity 計算 Segment 數組中每一個位置能夠分到的大小
     // 如 initialCapacity 爲 64,那麼每一個 Segment 或稱之爲"槽"能夠分到 4 個
     int c = initialCapacity / ssize;
     if (c * ssize < initialCapacity)
         ++c;
     // 默認 MIN_SEGMENT_TABLE_CAPACITY 是 2,這個值也是有講究的,由於這樣的話,對於具體的槽上,
     // 插入一個元素不至於擴容,插入第二個的時候纔會擴容
     int cap = MIN_SEGMENT_TABLE_CAPACITY;
     while (cap < c)
         cap <<= 1 ;
 
     // 建立 Segment 數組,
     // 並建立數組的第一個元素 segment[0]
     Segment<K,V> s0 =
         new Segment<K,V>(loadFactor, ( int )(cap * loadFactor),
                          (HashEntry<K,V>[]) new HashEntry[cap]);
     Segment<K,V>[] ss = (Segment<K,V>[]) new Segment[ssize];
     // 往數組寫入 segment[0]
     UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
     this .segments = ss;
}

初始化完成,咱們獲得了一個 Segment 數組。

咱們就當是用 new ConcurrentHashMap() 無參構造函數進行初始化的,那麼初始化完成後:

  • Segment 數組長度爲 16,不能夠擴容
  • Segment[i] 的默認大小爲 2,負載因子是 0.75,得出初始閾值爲 1.5,也就是之後插入第一個元素不會觸發擴容,插入第二個會進行第一次擴容
  • 這裏初始化了 segment[0],其餘位置仍是 null,至於爲何要初始化 segment[0],後面的代碼會介紹
  • 當前 segmentShift 的值爲 32 – 4 = 28,segmentMask 爲 16 – 1 = 15,姑且把它們簡單翻譯爲移位數和掩碼,這兩個值立刻就會用到

put 過程分析

咱們先看 put 的主流程,對於其中的一些關鍵細節操做,後面會進行詳細介紹。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public V put(K key, V value) {
     Segment<K,V> s;
     if (value == null )
         throw new NullPointerException();
     // 1. 計算 key 的 hash 值
     int hash = hash(key);
     // 2. 根據 hash 值找到 Segment 數組中的位置 j
     //    hash 是 32 位,無符號右移 segmentShift(28) 位,剩下低 4 位,
     //    而後和 segmentMask(15) 作一次與操做,也就是說 j 是 hash 值的最後 4 位,也就是槽的數組下標
     int j = (hash >>> segmentShift) & segmentMask;
     // 剛剛說了,初始化的時候初始化了 segment[0],可是其餘位置仍是 null,
     // ensureSegment(j) 對 segment[j] 進行初始化
     if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
          (segments, (j << SSHIFT) + SBASE)) == null ) //  in ensureSegment
         s = ensureSegment(j);
     // 3. 插入新值到 槽 s 中
     return s.put(key, hash, value, false );
}

第一層皮很簡單,根據 hash 值很快就能找到相應的 Segment,以後就是 Segment 內部的 put 操做了。

Segment 內部是由 數組+鏈表 組成的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
final V put(K key, int hash, V value, boolean onlyIfAbsent) {
     // 在往該 segment 寫入前,須要先獲取該 segment 的獨佔鎖
     //    先看主流程,後面還會具體介紹這部份內容
     HashEntry<K,V> node = tryLock() ? null :
         scanAndLockForPut(key, hash, value);
     V oldValue;
     try {
         // 這個是 segment 內部的數組
         HashEntry<K,V>[] tab = table;
         // 再利用 hash 值,求應該放置的數組下標
         int index = (tab.length - 1 ) & hash;
         // first 是數組該位置處的鏈表的表頭
         HashEntry<K,V> first = entryAt(tab, index);
 
         // 下面這串 for 循環雖然很長,不過也很好理解,想一想該位置沒有任何元素和已經存在一個鏈表這兩種狀況
         for (HashEntry<K,V> e = first;;) {
             if (e != null ) {
                 K k;
                 if ((k = e.key) == key ||
                     (e.hash == hash && key.equals(k))) {
                     oldValue = e.value;
                     if (!onlyIfAbsent) {
                         // 覆蓋舊值
                         e.value = value;
                         ++modCount;
                     }
                     break ;
                 }
                 // 繼續順着鏈表走
                 e = e.next;
             }
             else {
                 // node 究竟是不是 null,這個要看獲取鎖的過程,不過和這裏都沒有關係。
                 // 若是不爲 null,那就直接將它設置爲鏈表表頭;若是是null,初始化並設置爲鏈表表頭。
                 if (node != null )
                     node.setNext(first);
                 else
                     node = new HashEntry<K,V>(hash, key, value, first);
 
                 int c = count + 1 ;
                 // 若是超過了該 segment 的閾值,這個 segment 須要擴容
                 if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                     rehash(node); // 擴容後面也會具體分析
                 else
                     // 沒有達到閾值,將 node 放到數組 tab 的 index 位置,
                     // 其實就是將新的節點設置成原鏈表的表頭
                     setEntryAt(tab, index, node);
                 ++modCount;
                 count = c;
                 oldValue = null ;
                 break ;
             }
         }
     } finally {
         // 解鎖
         unlock();
     }
     return oldValue;
}

總體流程仍是比較簡單的,因爲有獨佔鎖的保護,因此 segment 內部的操做並不複雜。至於這裏面的併發問題,咱們稍後再進行介紹。

到這裏 put 操做就結束了,接下來,咱們說一說其中幾步關鍵的操做。

初始化槽: ensureSegment

ConcurrentHashMap 初始化的時候會初始化第一個槽 segment[0],對於其餘槽來講,在插入第一個值的時候進行初始化。

這裏須要考慮併發,由於極可能會有多個線程同時進來初始化同一個槽 segment[k],不過只要有一個成功了就能夠。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
private Segment<K,V> ensureSegment( int k) {
     final Segment<K,V>[] ss = this .segments;
     long u = (k << SSHIFT) + SBASE; // raw offset
     Segment<K,V> seg;
     if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null ) {
         // 這裏看到爲何以前要初始化 segment[0] 了,
         // 使用當前 segment[0] 處的數組長度和負載因子來初始化 segment[k]
         // 爲何要用「當前」,由於 segment[0] 可能早就擴容過了
         Segment<K,V> proto = ss[ 0 ];
         int cap = proto.table.length;
         float lf = proto.loadFactor;
         int threshold = ( int )(cap * lf);
 
         // 初始化 segment[k] 內部的數組
         HashEntry<K,V>[] tab = (HashEntry<K,V>[]) new HashEntry[cap];
         if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
             == null ) { // 再次檢查一遍該槽是否被其餘線程初始化了。
 
             Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
             // 使用 while 循環,內部用 CAS,當前線程成功設值或其餘線程成功設值後,退出
             while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
                    == null ) {
                 if (UNSAFE.compareAndSwapObject(ss, u, null , seg = s))
                     break ;
             }
         }
     }
     return seg;
}

總的來講,ensureSegment(int k) 比較簡單,對於併發操做使用 CAS 進行控制。

我沒搞懂這裏爲何要搞一個 while 循環,CAS 失敗不就表明有其餘線程成功了嗎,爲何要再進行判斷?

獲取寫入鎖: scanAndLockForPut

前面咱們看到,在往某個 segment 中 put 的時候,首先會調用 node = tryLock() ? null : scanAndLockForPut(key, hash, value),也就是說先進行一次 tryLock() 快速獲取該 segment 的獨佔鎖,若是失敗,那麼進入到 scanAndLockForPut 這個方法來獲取鎖。

下面咱們來具體分析這個方法中是怎麼控制加鎖的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
     HashEntry<K,V> first = entryForHash( this , hash);
     HashEntry<K,V> e = first;
     HashEntry<K,V> node = null ;
     int retries = - 1 ; // negative while locating node
 
     // 循環獲取鎖
     while (!tryLock()) {
         HashEntry<K,V> f; // to recheck first below
         if (retries < 0 ) {
             if (e == null ) {
                 if (node == null ) // speculatively create node
                     // 進到這裏說明數組該位置的鏈表是空的,沒有任何元素
                     // 固然,進到這裏的另外一個緣由是 tryLock() 失敗,因此該槽存在併發,不必定是該位置
                     node = new HashEntry<K,V>(hash, key, value, null );
                 retries = 0 ;
             }
             else if (key.equals(e.key))
                 retries = 0 ;
             else
                 // 順着鏈表往下走
                 e = e.next;
         }
         // 重試次數若是超過 MAX_SCAN_RETRIES(單核1多核64),那麼不搶了,進入到阻塞隊列等待鎖
         //    lock() 是阻塞方法,直到獲取鎖後返回
         else if (++retries > MAX_SCAN_RETRIES) {
             lock();
             break ;
         }
         else if ((retries & 1 ) == 0 &&
                  // 這個時候是有大問題了,那就是有新的元素進到了鏈表,成爲了新的表頭
                  //     因此這邊的策略是,至關於從新走一遍這個 scanAndLockForPut 方法
                  (f = entryForHash( this , hash)) != first) {
             e = first = f; // re-traverse if entry changed
             retries = - 1 ;
         }
     }
     return node;
}

這個方法有兩個出口,一個是 tryLock() 成功了,循環終止,另外一個就是重試次數超過了 MAX_SCAN_RETRIES,進到 lock() 方法,此方法會阻塞等待,直到成功拿到獨佔鎖。

這個方法就是看似複雜,可是其實就是作了一件事,那就是獲取該 segment 的獨佔鎖,若是須要的話順便實例化了一下 node。

擴容: rehash

重複一下,segment 數組不能擴容,擴容是 segment 數組某個位置內部的數組 HashEntry\[] 進行擴容,擴容後,容量爲原來的 2 倍。

首先,咱們要回顧一下觸發擴容的地方,put 的時候,若是判斷該值的插入會致使該 segment 的元素個數超過閾值,那麼先進行擴容,再插值,讀者這個時候能夠回去 put 方法看一眼。

該方法不須要考慮併發,由於到這裏的時候,是持有該 segment 的獨佔鎖的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
// 方法參數上的 node 是此次擴容後,須要添加到新的數組中的數據。
private void rehash(HashEntry<K,V> node) {
     HashEntry<K,V>[] oldTable = table;
     int oldCapacity = oldTable.length;
     // 2 倍
     int newCapacity = oldCapacity << 1 ;
     threshold = ( int )(newCapacity * loadFactor);
     // 建立新數組
     HashEntry<K,V>[] newTable =
         (HashEntry<K,V>[]) new HashEntry[newCapacity];
     // 新的掩碼,如從 16 擴容到 32,那麼 sizeMask 爲 31,對應二進制 ‘000...00011111’
     int sizeMask = newCapacity - 1 ;
 
     // 遍歷原數組,老套路,將原數組位置 i 處的鏈表拆分到 新數組位置 i 和 i+oldCap 兩個位置
     for ( int i = 0 ; i < oldCapacity ; i++) {
         // e 是鏈表的第一個元素
         HashEntry<K,V> e = oldTable[i];
         if (e != null ) {
             HashEntry<K,V> next = e.next;
             // 計算應該放置在新數組中的位置,
             // 假設原數組長度爲 16,e 在 oldTable[3] 處,那麼 idx 只多是 3 或者是 3 + 16 = 19
             int idx = e.hash & sizeMask;
             if (next == null )   // 該位置處只有一個元素,那比較好辦
                 newTable[idx] = e;
             else { // Reuse consecutive sequence at same slot
                 // e 是鏈表表頭
                 HashEntry<K,V> lastRun = e;
                 // idx 是當前鏈表的頭結點 e 的新位置
                 int lastIdx = idx;
 
                 // 下面這個 for 循環會找到一個 lastRun 節點,這個節點以後的全部元素是將要放到一塊兒的
                 for (HashEntry<K,V> last = next;
                      last != null ;
                      last = last.next) {
                     int k = last.hash & sizeMask;
                     if (k != lastIdx) {
                         lastIdx = k;
                         lastRun = last;
                     }
                 }
                 // 將 lastRun 及其以後的全部節點組成的這個鏈表放到 lastIdx 這個位置
                 newTable[lastIdx] = lastRun;
                 // 下面的操做是處理 lastRun 以前的節點,
                 //    這些節點可能分配在另外一個鏈表中,也可能分配到上面的那個鏈表中
                 for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
                     V v = p.value;
                     int h = p.hash;
                     int k = h & sizeMask;
                     HashEntry<K,V> n = newTable[k];
                     newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
                 }
             }
         }
     }
     // 將新來的 node 放到新數組中剛剛的 兩個鏈表之一 的 頭部
     int nodeIndex = node.hash & sizeMask; // add the new node
     node.setNext(newTable[nodeIndex]);
     newTable[nodeIndex] = node;
     table = newTable;
}

這裏的擴容比以前的 HashMap 要複雜一些,代碼難懂一點。上面有兩個挨着的 for 循環,第一個 for 有什麼用呢?

仔細一看發現,若是沒有第一個 for 循環,也是能夠工做的,可是,這個 for 循環下來,若是 lastRun 的後面還有比較多的節點,那麼此次就是值得的。由於咱們只須要克隆 lastRun 前面的節點,後面的一串節點跟着 lastRun 走就是了,不須要作任何操做。

我以爲 Doug Lea 的這個想法也是挺有意思的,不過比較壞的狀況就是每次 lastRun 都是鏈表的最後一個元素或者很靠後的元素,那麼此次遍歷就有點浪費了。不過 Doug Lea 也說了,根據統計,若是使用默認的閾值,大約只有 1/6 的節點須要克隆。

get 過程分析

相對於 put 來講,get 真的不要太簡單。

  1. 計算 hash 值,找到 segment 數組中的具體位置,或咱們前面用的「槽」
  2. 槽中也是一個數組,根據 hash 找到數組中具體的位置
  3. 到這裏是鏈表了,順着鏈表進行查找便可
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
public V get(Object key) {
     Segment<K,V> s; // manually integrate access methods to reduce overhead
     HashEntry<K,V>[] tab;
     // 1. hash 值
     int h = hash(key);
     long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
     // 2. 根據 hash 找到對應的 segment
     if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
         (tab = s.table) != null ) {
         // 3. 找到segment 內部數組相應位置的鏈表,遍歷
         for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                  (tab, (( long )(((tab.length - 1 ) & h)) << TSHIFT) + TBASE);
              e != null ; e = e.next) {
             K k;
             if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                 return e.value;
         }
     }
     return null ;
}

併發問題分析

如今咱們已經說完了 put 過程和 get 過程,咱們能夠看到 get 過程當中是沒有加鎖的,那天然咱們就須要去考慮併發問題。

添加節點的操做 put 和刪除節點的操做 remove 都是要加 segment 上的獨佔鎖的,因此它們之間天然不會有問題,咱們須要考慮的問題就是 get 的時候在同一個 segment 中發生了 put 或 remove 操做。

  1. put 操做的線程安全性。
    • 初始化槽,這個咱們以前就說過了,使用了 CAS 來初始化 Segment 中的數組。
    • 添加節點到鏈表的操做是插入到表頭的,因此,若是這個時候 get 操做在鏈表遍歷的過程已經到了中間,是不會影響的。固然,另外一個併發問題就是 get 操做在 put 以後,須要保證剛剛插入表頭的節點被讀取,這個依賴於 setEntryAt 方法中使用的 UNSAFE.putOrderedObject。
    • 擴容。擴容是新建立了數組,而後進行遷移數據,最後面將 newTable 設置給屬性 table。因此,若是 get 操做此時也在進行,那麼也不要緊,若是 get 先行,那麼就是在舊的 table 上作查詢操做;而 put 先行,那麼 put 操做的可見性保證就是 table 使用了 volatile 關鍵字。
  2. remove 操做的線程安全性。

    remove 操做咱們沒有分析源碼,因此這裏說的讀者感興趣的話仍是須要到源碼中去求實一下的。

    get 操做須要遍歷鏈表,可是 remove 操做會」破壞」鏈表。

    若是 remove 破壞的節點 get 操做已通過去了,那麼這裏不存在任何問題。

    若是 remove 先破壞了一個節點,分兩種狀況考慮。 一、若是此節點是頭結點,那麼須要將頭結點的 next 設置爲數組該位置的元素,table 雖然使用了 volatile 修飾,可是 volatile 並不能提供數組內部操做的可見性保證,因此源碼中使用了 UNSAFE 來操做數組,請看方法 setEntryAt。二、若是要刪除的節點不是頭結點,它會將要刪除節點的後繼節點接到前驅節點中,這裏的併發保證就是 next 屬性是 volatile 的。

Java8 HashMap

Java8 對 HashMap 進行了一些修改,最大的不一樣就是利用了紅黑樹,因此其由 數組+鏈表+紅黑樹 組成。

根據 Java7 HashMap 的介紹,咱們知道,查找的時候,根據 hash 值咱們可以快速定位到數組的具體下標,可是以後的話,須要順着鏈表一個個比較下去才能找到咱們須要的,時間複雜度取決於鏈表的長度,爲 O(n)。

爲了下降這部分的開銷,在 Java8 中,當鏈表中的元素超過了 8 個之後,會將鏈表轉換爲紅黑樹,在這些位置進行查找的時候能夠下降時間複雜度爲 O(logN)。

來一張圖簡單示意一下吧:

2

注意,上圖是示意圖,主要是描述結構,不會達到這個狀態的,由於這麼多數據的時候早就擴容了。

下面,咱們仍是用代碼來介紹吧,我的感受,Java8 的源碼可讀性要差一些,不過精簡一些。

Java7 中使用 Entry 來表明每一個 HashMap 中的數據節點,Java8 中使用 Node,基本沒有區別,都是 key,value,hash 和 next 這四個屬性,不過,Node 只能用於鏈表的狀況,紅黑樹的狀況須要使用 TreeNode。

咱們根據數組元素中,第一個節點數據類型是 Node 仍是 TreeNode 來判斷該位置下是鏈表仍是紅黑樹的。

put 過程分析

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
public V put(K key, V value) {
     return putVal(hash(key), key, value, false , true );
}
 
// 第三個參數 onlyIfAbsent 若是是 true,那麼只有在不存在該 key 時纔會進行 put 操做
// 第四個參數 evict 咱們這裏不關心
final V putVal( int hash, K key, V value, boolean onlyIfAbsent,
                boolean evict) {
     Node<K,V>[] tab; Node<K,V> p; int n, i;
     // 第一次 put 值的時候,會觸發下面的 resize(),相似 java7 的第一次 put 也要初始化數組長度
     // 第一次 resize 和後續的擴容有些不同,由於此次是數組從 null 初始化到默認的 16 或自定義的初始容量
     if ((tab = table) == null || (n = tab.length) == 0 )
         n = (tab = resize()).length;
     // 找到具體的數組下標,若是此位置沒有值,那麼直接初始化一下 Node 並放置在這個位置就能夠了
     if ((p = tab[i = (n - 1 ) & hash]) == null )
         tab[i] = newNode(hash, key, value, null );
 
     else { // 數組該位置有數據
         Node<K,V> e; K k;
         // 首先,判斷該位置的第一個數據和咱們要插入的數據,key 是否是"相等",若是是,取出這個節點
         if (p.hash == hash &&
             ((k = p.key) == key || (key != null && key.equals(k))))
             e = p;
         // 若是該節點是表明紅黑樹的節點,調用紅黑樹的插值方法,本文不展開說紅黑樹
         else if (p instanceof TreeNode)
             e = ((TreeNode<K,V>)p).putTreeVal( this , tab, hash, key, value);
         else {
             // 到這裏,說明數組該位置上是一個鏈表
             for ( int binCount = 0 ; ; ++binCount) {
                 // 插入到鏈表的最後面(Java7 是插入到鏈表的最前面)
                 if ((e = p.next) == null ) {
                     p.next = newNode(hash, key, value, null );
                     // TREEIFY_THRESHOLD 爲 8,因此,若是新插入的值是鏈表中的第 9 個
                     // 會觸發下面的 treeifyBin,也就是將鏈表轉換爲紅黑樹
                     if (binCount >= TREEIFY_THRESHOLD - 1 ) // -1 for 1st
                         treeifyBin(tab, hash);
                     break ;
                 }
                 // 若是在該鏈表中找到了"相等"的 key(== 或 equals)
                 if (e.hash == hash &&
                     ((k = e.key) == key || (key != null && key.equals(k))))
                     // 此時 break,那麼 e 爲鏈表中[與要插入的新值的 key "相等"]的 node
                     break ;
                 p = e;
             }
         }
         // e!=null 說明存在舊值的key與要插入的key"相等"
         // 對於咱們分析的put操做,下面這個 if 其實就是進行 "值覆蓋",而後返回舊值
         if (e != null ) {
             V oldValue = e.value;
             if (!onlyIfAbsent || oldValue == null )
                 e.value = value;
             afterNodeAccess(e);
             return oldValue;
         }
     }
     ++modCount;
     // 若是 HashMap 因爲新插入這個值致使 size 已經超過了閾值,須要進行擴容
     if (++size > threshold)
         resize();
     afterNodeInsertion(evict);
     return null ;
}

和 Java7 稍微有點不同的地方就是,Java7 是先擴容後插入新值的,Java8 先插值再擴容,不過這個不重要。

數組擴容

resize() 方法用於初始化數組或數組擴容,每次擴容後,容量爲原來的 2 倍,並進行數據遷移。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
final Node<K,V>[] resize() {
     Node<K,V>[] oldTab = table;
     int oldCap = (oldTab == null ) ? 0 : oldTab.length;
     int oldThr = threshold;
     int newCap, newThr = 0 ;
     if (oldCap > 0 ) { // 對應數組擴容
         if (oldCap >= MAXIMUM_CAPACITY) {
             threshold = Integer.MAX_VALUE;
             return oldTab;
         }
         // 將數組大小擴大一倍
         else if ((newCap = oldCap << 1 ) < MAXIMUM_CAPACITY &&
                  oldCap >= DEFAULT_INITIAL_CAPACITY)
             // 將閾值擴大一倍
             newThr = oldThr << 1 ; // double threshold
     }
     else if (oldThr > 0 ) // 對應使用 new HashMap(int initialCapacity) 初始化後,第一次 put 的時候
         newCap = oldThr;
     else { // 對應使用 new HashMap() 初始化後,第一次 put 的時候
         newCap = DEFAULT_INITIAL_CAPACITY;
         newThr = ( int )(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
     }
 
     if (newThr == 0 ) {
         float ft = ( float )newCap * loadFactor;
         newThr = (newCap < MAXIMUM_CAPACITY && ft < ( float )MAXIMUM_CAPACITY ?
                   ( int )ft : Integer.MAX_VALUE);
     }
     threshold = newThr;
 
     // 用新的數組大小初始化新的數組
     Node<K,V>[] newTab = (Node<K,V>[]) new Node[newCap];
     table = newTab; // 若是是初始化數組,到這裏就結束了,返回 newTab 便可
 
     if (oldTab != null ) {
         // 開始遍歷原數組,進行數據遷移。
         for ( int j = 0 ; j < oldCap; ++j) {
             Node<K,V> e;
             if ((e = oldTab[j]) != null ) {
                 oldTab[j] = null ;
                 // 若是該數組位置上只有單個元素,那就簡單了,簡單遷移這個元素就能夠了
                 if (e.next == null )
                     newTab[e.hash & (newCap - 1 )] = e;
                 // 若是是紅黑樹,具體咱們就不展開了
                 else if (e instanceof TreeNode)
                     ((TreeNode<K,V>)e).split( this , newTab, j, oldCap);
                 else {
                     // 這塊是處理鏈表的狀況,
                     // 須要將此鏈表拆成兩個鏈表,放到新的數組中,而且保留原來的前後順序
                     // loHead、loTail 對應一條鏈表,hiHead、hiTail 對應另外一條鏈表,代碼仍是比較簡單的
                     Node<K,V> loHead = null , loTail = null ;
                     Node<K,V> hiHead = null , hiTail = null ;
                     Node<K,V> next;
                     do {
                         next = e.next;
                         if ((e.hash & oldCap) == 0 ) {
                             if (loTail == null )
                                 loHead = e;
                             else
                                 loTail.next = e;
                             loTail = e;
                         }
                         else {
                             if (hiTail == null )
                                 hiHead = e;
                             else
                                 hiTail.next = e;
                             hiTail = e;
                         }
                     } while ((e = next) != null );
                     if (loTail != null ) {
                         loTail.next = null ;
                         // 第一條鏈表
                         newTab[j] = loHead;
                     }
                     if (hiTail != null ) {
                         hiTail.next = null ;
                         // 第二條鏈表的新的位置是 j + oldCap,這個很好理解
                         newTab[j + oldCap] = hiHead;
                     }
                 }
             }
         }
     }
     return newTab;
}

get 過程分析

相對於 put 來講,get 真的太簡單了。

  1. 計算 key 的 hash 值,根據 hash 值找到對應數組下標: hash & (length-1)
  2. 判斷數組該位置處的元素是否恰好就是咱們要找的,若是不是,走第三步
  3. 判斷該元素類型是不是 TreeNode,若是是,用紅黑樹的方法取數據,若是不是,走第四步
  4. 遍歷鏈表,直到找到相等(==或equals)的 key
1
2
3
4
public V get(Object key) {
     Node<K,V> e;
     return (e = getNode(hash(key), key)) == null ? null : e.value;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
final Node<K,V> getNode( int hash, Object key) {
     Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
     if ((tab = table) != null && (n = tab.length) > 0 &&
         (first = tab[(n - 1 ) & hash]) != null ) {
         // 判斷第一個節點是否是就是須要的
         if (first.hash == hash && // always check first node
             ((k = first.key) == key || (key != null && key.equals(k))))
             return first;
         if ((e = first.next) != null ) {
             // 判斷是不是紅黑樹
             if (first instanceof TreeNode)
                 return ((TreeNode<K,V>)first).getTreeNode(hash, key);
 
             // 鏈表遍歷
             do {
                 if (e.hash == hash &&
                     ((k = e.key) == key || (key != null && key.equals(k))))
                     return e;
             } while ((e = e.next) != null );
         }
     }
     return null ;
}

Java8 ConcurrentHashMap

Java7 中實現的 ConcurrentHashMap 說實話仍是比較複雜的,Java8 對 ConcurrentHashMap 進行了比較大的改動。建議讀者能夠參考 Java8 中 HashMap 相對於 Java7 HashMap 的改動,對於 ConcurrentHashMap,Java8 也引入了紅黑樹。

說實話,Java8 ConcurrentHashMap 源碼真心不簡單,最難的在於擴容,數據遷移操做不容易看懂。

咱們先用一個示意圖來描述下其結構:

4

結構上和 Java8 的 HashMap 基本上同樣,不過它要保證線程安全性,因此在源碼上確實要複雜一些。

初始化

1
2
3
4
5
6
7
8
9
10
11
// 這構造函數裏,什麼都不幹
public ConcurrentHashMap() {
}
public ConcurrentHashMap( int initialCapacity) {
     if (initialCapacity < 0 )
         throw new IllegalArgumentException();
     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1 )) ?
                MAXIMUM_CAPACITY :
                tableSizeFor(initialCapacity + (initialCapacity >>> 1 ) + 1 ));
     this .sizeCtl = cap;
}

這個初始化方法有點意思,經過提供初始容量,計算了 sizeCtl,sizeCtl = 【 (1.5 * initialCapacity + 1),而後向上取最近的 2 的 n 次方】。如 initialCapacity 爲 10,那麼獲得 sizeCtl 爲 16,若是 initialCapacity 爲 11,獲得 sizeCtl 爲 32。

sizeCtl 這個屬性使用的場景不少,不過只要跟着文章的思路來,就不會被它搞暈了。

若是你愛折騰,也能夠看下另外一個有三個參數的構造方法,這裏我就不說了,大部分時候,咱們會使用無參構造函數進行實例化,咱們也按照這個思路來進行源碼分析吧。

put 過程分析

仔細地一行一行代碼看下去:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
public V put(K key, V value) {
     return putVal(key, value, false );
}
final V putVal(K key, V value, boolean onlyIfAbsent) {
     if (key == null || value == null ) throw new NullPointerException();
     // 獲得 hash 值
     int hash = spread(key.hashCode());
     // 用於記錄相應鏈表的長度
     int binCount = 0 ;
     for (Node<K,V>[] tab = table;;) {
         Node<K,V> f; int n, i, fh;
         // 若是數組"空",進行數組初始化
         if (tab == null || (n = tab.length) == 0 )
             // 初始化數組,後面會詳細介紹
             tab = initTable();
 
         // 找該 hash 值對應的數組下標,獲得第一個節點 f
         else if ((f = tabAt(tab, i = (n - 1 ) & hash)) == null ) {
             // 若是數組該位置爲空,
             //    用一次 CAS 操做將這個新值放入其中便可,這個 put 操做差很少就結束了,能夠拉到最後面了
             //          若是 CAS 失敗,那就是有併發操做,進到下一個循環就行了
             if (casTabAt(tab, i, null ,
                          new Node<K,V>(hash, key, value, null )))
                 break ;                   // no lock when adding to empty bin
         }
         // hash 竟然能夠等於 MOVED,這個須要到後面才能看明白,不過從名字上也能猜到,確定是由於在擴容
         else if ((fh = f.hash) == MOVED)
             // 幫助數據遷移,這個等到看完數據遷移部分的介紹後,再理解這個就很簡單了
             tab = helpTransfer(tab, f);
 
         else { // 到這裏就是說,f 是該位置的頭結點,並且不爲空
 
             V oldVal = null ;
             // 獲取數組該位置的頭結點的監視器鎖
             synchronized (f) {
                 if (tabAt(tab, i) == f) {
                     if (fh >= 0 ) { // 頭結點的 hash 值大於 0,說明是鏈表
                         // 用於累加,記錄鏈表的長度
                         binCount = 1 ;
                         // 遍歷鏈表
                         for (Node<K,V> e = f;; ++binCount) {
                             K ek;
                             // 若是發現了"相等"的 key,判斷是否要進行值覆蓋,而後也就能夠 break 了
                             if (e.hash == hash &&
                                 ((ek = e.key) == key ||
                                  (ek != null && key.equals(ek)))) {
                                 oldVal = e.val;
                                 if (!onlyIfAbsent)
                                     e.val = value;
                                 break ;
                             }
                             // 到了鏈表的最末端,將這個新值放到鏈表的最後面
                             Node<K,V> pred = e;
                             if ((e = e.next) == null ) {
                                 pred.next = new Node<K,V>(hash, key,
                                                           value, null );
                                 break ;
                             }
                         }
                     }
                     else if (f instanceof TreeBin) { // 紅黑樹
                         Node<K,V> p;
                         binCount = 2 ;
                         // 調用紅黑樹的插值方法插入新節點
                         if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                        value)) != null ) {
                             oldVal = p.val;
                             if (!onlyIfAbsent)
                                 p.val = value;
                         }
                     }
                 }
             }
             // binCount != 0 說明上面在作鏈表操做
             if (binCount != 0 ) {
                 // 判斷是否要將鏈表轉換爲紅黑樹,臨界值和 HashMap 同樣,也是 8
                 if (binCount >= TREEIFY_THRESHOLD)
                     // 這個方法和 HashMap 中稍微有一點點不一樣,那就是它不是必定會進行紅黑樹轉換,
                     // 若是當前數組的長度小於 64,那麼會選擇進行數組擴容,而不是轉換爲紅黑樹
                     //    具體源碼咱們就不看了,擴容部分後面說
                     treeifyBin(tab, i);
                 if (oldVal != null )
                     return oldVal;
                 break ;
             }
         }
     }
     //
     addCount(1L, binCount);
     return null ;
}

put 的主流程看完了,可是至少留下了幾個問題,第一個是初始化,第二個是擴容,第三個是幫助數據遷移,這些咱們都會在後面進行一一介紹。

初始化數組:initTable

這個比較簡單,主要就是初始化一個合適大小的數組,而後會設置 sizeCtl。

初始化方法中的併發問題是經過對 sizeCtl 進行一個 CAS 操做來控制的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
private final Node<K,V>[] initTable() {
     Node<K,V>[] tab; int sc;
     while ((tab = table) == null || tab.length == 0 ) {
         // 初始化的"功勞"被其餘線程"搶去"了
         if ((sc = sizeCtl) < 0 )
             Thread.yield(); // lost initialization race; just spin
         // CAS 一下,將 sizeCtl 設置爲 -1,表明搶到了鎖
         else if (U.compareAndSwapInt( this , SIZECTL, sc, - 1 )) {
             try {
                 if ((tab = table) == null || tab.length == 0 ) {
                     // DEFAULT_CAPACITY 默認初始容量是 16
                     int n = (sc > 0 ) ? sc : DEFAULT_CAPACITY;
                     // 初始化數組,長度爲 16 或初始化時提供的長度
                     Node<K,V>[] nt = (Node<K,V>[]) new Node<?,?>[n];
                     // 將這個數組賦值給 table,table 是 volatile 的
                     table = tab = nt;
                     // 若是 n 爲 16 的話,那麼這裏 sc = 12
                     // 其實就是 0.75 * n
                     sc = n - (n >>> 2 );
                 }
             } finally {
                 // 設置 sizeCtl 爲 sc,咱們就當是 12 吧
                 sizeCtl = sc;
             }
             break ;
         }
     }
     return tab;
}

鏈表轉紅黑樹: treeifyBin

前面咱們在 put 源碼分析也說過,treeifyBin 不必定就會進行紅黑樹轉換,也多是僅僅作數組擴容。咱們仍是進行源碼分析吧。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
private final void treeifyBin(Node<K,V>[] tab, int index) {
     Node<K,V> b; int n, sc;
     if (tab != null ) {
         // MIN_TREEIFY_CAPACITY 爲 64
         // 因此,若是數組長度小於 64 的時候,其實也就是 32 或者 16 或者更小的時候,會進行數組擴容
         if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
             // 後面咱們再詳細分析這個方法
             tryPresize(n << 1 );
         // b 是頭結點
         else if ((b = tabAt(tab, index)) != null && b.hash >= 0 ) {
             // 加鎖
             synchronized (b) {
 
                 if (tabAt(tab, index) == b) {
                     // 下面就是遍歷鏈表,創建一顆紅黑樹
                     TreeNode<K,V> hd = null , tl = null ;
                     for (Node<K,V> e = b; e != null ; e = e.next) {
                         TreeNode<K,V> p =
                             new TreeNode<K,V>(e.hash, e.key, e.val,
                                               null , null );
                         if ((p.prev = tl) == null )
                             hd = p;
                         else
                             tl.next = p;
                         tl = p;
                     }
                     // 將紅黑樹設置到數組相應位置中
                     setTabAt(tab, index, new TreeBin<K,V>(hd));
                 }
             }
         }
     }
}

擴容:tryPresize

若是說 Java8 ConcurrentHashMap 的源碼不簡單,那麼說的就是擴容操做和遷移操做。

這個方法要完徹底全看懂還須要看以後的 transfer 方法,讀者應該提早知道這點。

這裏的擴容也是作翻倍擴容的,擴容後數組容量爲原來的 2 倍。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
// 首先要說明的是,方法參數 size 傳進來的時候就已經翻了倍了
private final void tryPresize( int size) {
     // c:size 的 1.5 倍,再加 1,再往上取最近的 2 的 n 次方。
     int c = (size >= (MAXIMUM_CAPACITY >>> 1 )) ? MAXIMUM_CAPACITY :
         tableSizeFor(size + (size >>> 1 ) + 1 );
     int sc;
     while ((sc = sizeCtl) >= 0 ) {
         Node<K,V>[] tab = table; int n;
 
         // 這個 if 分支和以前說的初始化數組的代碼基本上是同樣的,在這裏,咱們能夠不用管這塊代碼
         if (tab == null || (n = tab.length) == 0 ) {
             n = (sc > c) ? sc : c;
             if (U.compareAndSwapInt( this , SIZECTL, sc, - 1 )) {
                 try {
                     if (table == tab) {
                         @SuppressWarnings ( "unchecked" )
                         Node<K,V>[] nt = (Node<K,V>[]) new Node<?,?>[n];
                         table = nt;
                         sc = n - (n >>> 2 ); // 0.75 * n
                     }
                 } finally {
                     sizeCtl = sc;
                 }
             }
         }
         else if (c <= sc || n >= MAXIMUM_CAPACITY)
             break ;
         else if (tab == table) {
             // 我沒看懂 rs 的真正含義是什麼,不過也關係不大
             int rs = resizeStamp(n);
 
             if (sc < 0 ) {
                 Node<K,V>[] nt;
                 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                     sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                     transferIndex <= 0 )
                     break ;
                 // 2. 用 CAS 將 sizeCtl 加 1,而後執行 transfer 方法
                 //    此時 nextTab 不爲 null
                 if (U.compareAndSwapInt( this , SIZECTL, sc, sc + 1 ))
                     transfer(tab, nt);
             }
             // 1. 將 sizeCtl 設置爲 (rs << RESIZE_STAMP_SHIFT) + 2)
             //     我是沒看懂這個值真正的意義是什麼?不過能夠計算出來的是,結果是一個比較大的負數
             //  調用 transfer 方法,此時 nextTab 參數爲 null
             else if (U.compareAndSwapInt( this , SIZECTL, sc,
                                          (rs << RESIZE_STAMP_SHIFT) + 2 ))
                 transfer(tab, null );
         }
     }
}

這個方法的核心在於 sizeCtl 值的操做,首先將其設置爲一個負數,而後執行 transfer(tab, null),再下一個循環將 sizeCtl 加 1,並執行 transfer(tab, nt),以後多是繼續 sizeCtl 加 1,並執行 transfer(tab, nt)。

因此,可能的操做就是執行 1 次 transfer(tab, null) + 屢次 transfer(tab, nt),這裏怎麼結束循環的須要看完 transfer 源碼才清楚。

數據遷移:transfer

下面這個方法很點長,將原來的 tab 數組的元素遷移到新的 nextTab 數組中。

雖然咱們以前說的 tryPresize 方法中屢次調用 transfer 不涉及多線程,可是這個 transfer 方法能夠在其餘地方被調用,典型地,咱們以前在說 put 方法的時候就說過了,請往上看 put 方法,是否是有個地方調用了 helpTransfer 方法,helpTransfer 方法會調用 transfer 方法的。

此方法支持多線程執行,外圍調用此方法的時候,會保證第一個發起數據遷移的線程,nextTab 參數爲 null,以後再調用此方法的時候,nextTab 不會爲 null。

閱讀源碼以前,先要理解併發操做的機制。原數組長度爲 n,因此咱們有 n 個遷移任務,讓每一個線程每次負責一個小任務是最簡單的,每作完一個任務再檢測是否有其餘沒作完的任務,幫助遷移就能夠了,而 Doug Lea 使用了一個 stride,簡單理解就是步長,每一個線程每次負責遷移其中的一部分,如每次遷移 16 個小任務。因此,咱們就須要一個全局的調度者來安排哪一個線程執行哪幾個任務,這個就是屬性 transferIndex 的做用。

第一個發起數據遷移的線程會將 transferIndex 指向原數組最後的位置,而後從後往前的 stride 個任務屬於第一個線程,而後將 transferIndex 指向新的位置,再往前的 stride 個任務屬於第二個線程,依此類推。固然,這裏說的第二個線程不是真的必定指代了第二個線程,也能夠是同一個線程,這個讀者應該能理解吧。其實就是將一個大的遷移任務分爲了一個個任務包。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
     int n = tab.length, stride;
 
     // stride 在單核下直接等於 n,多核模式下爲 (n>>>3)/NCPU,最小值是 16
     // stride 能夠理解爲」步長「,有 n 個位置是須要進行遷移的,
     //   將這 n 個任務分爲多個任務包,每一個任務包有 stride 個任務
     if ((stride = (NCPU > 1 ) ? (n >>> 3 ) / NCPU : n) < MIN_TRANSFER_STRIDE)
         stride = MIN_TRANSFER_STRIDE; // subdivide range
 
     // 若是 nextTab 爲 null,先進行一次初始化
     //    前面咱們說了,外圍會保證第一個發起遷移的線程調用此方法時,參數 nextTab 爲 null
     //       以後參與遷移的線程調用此方法時,nextTab 不會爲 null
     if (nextTab == null ) {
         try {
             // 容量翻倍
             Node<K,V>[] nt = (Node<K,V>[]) new Node<?,?>[n << 1 ];
             nextTab = nt;
         } catch (Throwable ex) {      // try to cope with OOME
             sizeCtl = Integer.MAX_VALUE;
             return ;
         }
         // nextTable 是 ConcurrentHashMap 中的屬性
         nextTable = nextTab;
         // transferIndex 也是 ConcurrentHashMap 的屬性,用於控制遷移的位置
         transferIndex = n;
     }
 
     int nextn = nextTab.length;
 
     // ForwardingNode 翻譯過來就是正在被遷移的 Node
     // 這個構造方法會生成一個Node,key、value 和 next 都爲 null,關鍵是 hash 爲 MOVED
     // 後面咱們會看到,原數組中位置 i 處的節點完成遷移工做後,
     //    就會將位置 i 處設置爲這個 ForwardingNode,用來告訴其餘線程該位置已經處理過了
     //    因此它其實至關因而一個標誌。
     ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
 
 
     // advance 指的是作完了一個位置的遷移工做,能夠準備作下一個位置的了
     boolean advance = true ;
     boolean finishing = false ; // to ensure sweep before committing nextTab
 
     /*
      * 下面這個 for 循環,最難理解的在前面,而要看懂它們,應該先看懂後面的,而後再倒回來看
      *
      */
 
     // i 是位置索引,bound 是邊界,注意是從後往前
     for ( int i = 0 , bound = 0 ;;) {
         Node<K,V> f; int fh;
 
         // 下面這個 while 真的是很差理解
         // advance 爲 true 表示能夠進行下一個位置的遷移了
         //   簡單理解結局:i 指向了 transferIndex,bound 指向了 transferIndex-stride
         while (advance) {
             int nextIndex, nextBound;
             if (--i >= bound || finishing)
                 advance = false ;
 
             // 將 transferIndex 值賦給 nextIndex
             // 這裏 transferIndex 一旦小於等於 0,說明原數組的全部位置都有相應的線程去處理了
             else if ((nextIndex = transferIndex) <= 0 ) {
                 i = - 1 ;
                 advance = false ;
             }
             else if (U.compareAndSwapInt
                      ( this , TRANSFERINDEX, nextIndex,
                       nextBound = (nextIndex > stride ?
                                    nextIndex - stride : 0 ))) {
                 // 看括號中的代碼,nextBound 是此次遷移任務的邊界,注意,是從後往前
                 bound = nextBound;
                 i = nextIndex - 1 ;
                 advance = false ;
             }
         }
         if (i < 0 || i >= n || i + n >= nextn) {
             int sc;
             if (finishing) {
                 // 全部的遷移操做已經完成
                 nextTable = null ;
                 // 將新的 nextTab 賦值給 table 屬性,完成遷移
                 table = nextTab;
                 // 從新計算 sizeCtl:n 是原數組長度,因此 sizeCtl 得出的值將是新數組長度的 0.75 倍
                 sizeCtl = (n << 1 ) - (n >>> 1 );
                 return ;
             }
 
             // 以前咱們說過,sizeCtl 在遷移前會設置爲 (rs << RESIZE_STAMP_SHIFT) + 2
             // 而後,每有一個線程參與遷移就會將 sizeCtl 加 1,
             // 這裏使用 CAS 操做對 sizeCtl 進行減 1,表明作完了屬於本身的任務
             if (U.compareAndSwapInt( this , SIZECTL, sc = sizeCtl, sc - 1 )) {
                 // 任務結束,方法退出
                 if ((sc - 2 ) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                     return ;
 
                 // 到這裏,說明 (sc - 2) == resizeStamp(n) << RESIZE_STAMP_SHIFT,
                 // 也就是說,全部的遷移任務都作完了,也就會進入到上面的 if(finishing){} 分支了
                 finishing = advance = true ;
                 i = n; // recheck before commit
             }
         }
         // 若是位置 i 處是空的,沒有任何節點,那麼放入剛剛初始化的 ForwardingNode 」空節點「
         else if ((f = tabAt(tab, i)) == null )
             advance = casTabAt(tab, i, null , fwd);
         // 該位置處是一個 ForwardingNode,表明該位置已經遷移過了
         else if ((fh = f.hash) == MOVED)
             advance = true ; // already processed
         else {
             // 對數組該位置處的結點加鎖,開始處理數組該位置處的遷移工做
             synchronized (f) {
                 if (tabAt(tab, i) == f) {
                     Node<K,V> ln, hn;
                     // 頭結點的 hash 大於 0,說明是鏈表的 Node 節點
                     if (fh >= 0 ) {
                         // 下面這一塊和 Java7 中的 ConcurrentHashMap 遷移是差很少的,
                         // 須要將鏈表一分爲二,
                         //   找到原鏈表中的 lastRun,而後 lastRun 及其以後的節點是一塊兒進行遷移的
                         //   lastRun 以前的節點須要進行克隆,而後分到兩個鏈表中
                         int runBit = fh & n;
                         Node<K,V> lastRun = f;
                         for (Node<K,V> p = f.next; p != null ; p = p.next) {
                             int b = p.hash & n;
                             if (b != runBit) {
                                 runBit = b;
                                 lastRun = p;
                             }
                         }
                         if (runBit == 0 ) {
                             ln = lastRun;
                             hn = null ;
                         }
                         else {
                             hn = lastRun;
                             ln = null ;
                         }
                         for (Node<K,V> p = f; p != lastRun; p = p.next) {
                             int ph = p.hash; K pk = p.key; V pv = p.val;
                             if ((ph & n) == 0 )
                                 ln = new Node<K,V>(ph, pk, pv, ln);
                             else
                                 hn = new Node<K,V>(ph, pk, pv, hn);
                         }
                         // 其中的一個鏈表放在新數組的位置 i
                         setTabAt(nextTab, i, ln);
                         // 另外一個鏈表放在新數組的位置 i+n
                         setTabAt(nextTab, i + n, hn);
                         // 將原數組該位置處設置爲 fwd,表明該位置已經處理完畢,
                         //    其餘線程一旦看到該位置的 hash 值爲 MOVED,就不會進行遷移了
                         setTabAt(tab, i, fwd);
                         // advance 設置爲 true,表明該位置已經遷移完畢
                         advance = true ;
                     }
                     else if (f instanceof TreeBin) {
                         // 紅黑樹的遷移
                         TreeBin<K,V> t = (TreeBin<K,V>)f;
                         TreeNode<K,V> lo = null , loTail = null ;
                         TreeNode<K,V> hi = null , hiTail = null ;
                         int lc = 0 , hc = 0 ;
                         for (Node<K,V> e = t.first; e != null ; e = e.next) {
                             int h = e.hash;
                             TreeNode<K,V> p = new TreeNode<K,V>
                                 (h, e.key, e.val, null , null );
                             if ((h & n) == 0 ) {
                                 if ((p.prev = loTail) == null )
                                     lo = p;
                                 else
                                     loTail.next = p;
                                 loTail = p;
                                 ++lc;
                             }
                             else {
                                 if ((p.prev = hiTail) == null )
                                     hi = p;
                                 else
                                     hiTail.next = p;
                                 hiTail = p;
                                 ++hc;
                             }
                         }
                         // 若是一分爲二後,節點數少於 8,那麼將紅黑樹轉換回鏈表
                         ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                             (hc != 0 ) ? new TreeBin<K,V>(lo) : t;
                         hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                             (lc != 0 ) ? new TreeBin<K,V>(hi) : t;
 
                         // 將 ln 放置在新數組的位置 i
                         setTabAt(nextTab, i, ln);
                         // 將 hn 放置在新數組的位置 i+n
                         setTabAt(nextTab, i + n, hn);
                         // 將原數組該位置處設置爲 fwd,表明該位置已經處理完畢,
                         //    其餘線程一旦看到該位置的 hash 值爲 MOVED,就不會進行遷移了
                         setTabAt(tab, i, fwd);
                         // advance 設置爲 true,表明該位置已經遷移完畢
                         advance = true ;
                     }
                 }
             }
         }
     }
}

說到底,transfer 這個方法並無實現全部的遷移任務,每次調用這個方法只實現了 transferIndex 往前 stride 個位置的遷移工做,其餘的須要由外圍來控制。

這個時候,再回去仔細看 tryPresize 方法可能就會更加清晰一些了。

get 過程分析

get 方法歷來都是最簡單的,這裏也不例外:

  1. 計算 hash 值
  2. 根據 hash 值找到數組對應位置: (n – 1) & h
  3. 根據該位置處結點性質進行相應查找
    • 若是該位置爲 null,那麼直接返回 null 就能夠了
    • 若是該位置處的節點恰好就是咱們須要的,返回該節點的值便可
    • 若是該位置節點的 hash 值小於 0,說明正在擴容,或者是紅黑樹,後面咱們再介紹 find 方法
    • 若是以上 3 條都不知足,那就是鏈表,進行遍歷比對便可
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
public V get(Object key) {
     Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
     int h = spread(key.hashCode());
     if ((tab = table) != null && (n = tab.length) > 0 &&
         (e = tabAt(tab, (n - 1 ) & h)) != null ) {
         // 判斷頭結點是否就是咱們須要的節點
         if ((eh = e.hash) == h) {
             if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                 return e.val;
         }
         // 若是頭結點的 hash 小於 0,說明 正在擴容,或者該位置是紅黑樹
         else if (eh < 0 )
             // 參考 ForwardingNode.find(int h, Object k) 和 TreeBin.find(int h, Object k)
             return (p = e.find(h, key)) != null ? p.val : null ;
 
         // 遍歷鏈表
         while ((e = e.next) != null ) {
             if (e.hash == h &&
                 ((ek = e.key) == key || (ek != null && key.equals(ek))))
                 return e.val;
         }
     }
     return null ;
}

簡單說一句,此方法的大部份內容都很簡單,只有正好碰到擴容的狀況,ForwardingNode.find(int h, Object k) 稍微複雜一些,不過在瞭解了數據遷移的過程後,這個也就不難了,因此限於篇幅這裏也不展開說了。

相關文章
相關標籤/搜索