Storm-Redis 提供了 Storm 與 Redis 的集成支持,你只須要引入對應的依賴便可使用:html
<dependency> <groupId>org.apache.storm</groupId> <artifactId>storm-redis</artifactId> <version>${storm.version}</version> <type>jar</type> </dependency>
Storm-Redis 使用 Jedis 爲 Redis 客戶端,並提供了以下三個基本的 Bolt 實現:java
RedisLookupBolt
、RedisStoreBolt
、RedisFilterBolt
均繼承自 AbstractRedisBolt
抽象類。咱們能夠經過繼承該抽象類,實現自定義 RedisBolt,進行功能的拓展。git
這裏首先給出一個集成案例:進行詞頻統計並將最後的結果存儲到 Redis。項目結構以下:github
用例源碼下載地址:storm-redis-integrationredis
項目主要依賴以下:shell
<properties> <storm.version>1.2.2</storm.version> </properties> <dependencies> <dependency> <groupId>org.apache.storm</groupId> <artifactId>storm-core</artifactId> <version>${storm.version}</version> </dependency> <dependency> <groupId>org.apache.storm</groupId> <artifactId>storm-redis</artifactId> <version>${storm.version}</version> </dependency> </dependencies>
/** * 產生詞頻樣本的數據源 */ public class DataSourceSpout extends BaseRichSpout { private List<String> list = Arrays.asList("Spark", "Hadoop", "HBase", "Storm", "Flink", "Hive"); private SpoutOutputCollector spoutOutputCollector; @Override public void open(Map map, TopologyContext topologyContext, SpoutOutputCollector spoutOutputCollector) { this.spoutOutputCollector = spoutOutputCollector; } @Override public void nextTuple() { // 模擬產生數據 String lineData = productData(); spoutOutputCollector.emit(new Values(lineData)); Utils.sleep(1000); } @Override public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) { outputFieldsDeclarer.declare(new Fields("line")); } /** * 模擬數據 */ private String productData() { Collections.shuffle(list); Random random = new Random(); int endIndex = random.nextInt(list.size()) % (list.size()) + 1; return StringUtils.join(list.toArray(), "\t", 0, endIndex); } }
產生的模擬數據格式以下:apache
Spark HBase Hive Flink Storm Hadoop HBase Spark Flink HBase Storm HBase Hadoop Hive Flink HBase Flink Hive Storm Hive Flink Hadoop HBase Hive Hadoop Spark HBase Storm
/** * 將每行數據按照指定分隔符進行拆分 */ public class SplitBolt extends BaseRichBolt { private OutputCollector collector; @Override public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) { this.collector = collector; } @Override public void execute(Tuple input) { String line = input.getStringByField("line"); String[] words = line.split("\t"); for (String word : words) { collector.emit(new Values(word, String.valueOf(1))); } } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("word", "count")); } }
/** * 進行詞頻統計 */ public class CountBolt extends BaseRichBolt { private Map<String, Integer> counts = new HashMap<>(); private OutputCollector collector; @Override public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) { this.collector=collector; } @Override public void execute(Tuple input) { String word = input.getStringByField("word"); Integer count = counts.get(word); if (count == null) { count = 0; } count++; counts.put(word, count); // 輸出 collector.emit(new Values(word, String.valueOf(count))); } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("word", "count")); } }
實現 RedisStoreMapper 接口,定義 tuple 與 Redis 中數據的映射關係:即須要指定 tuple 中的哪一個字段爲 key,哪一個字段爲 value,而且存儲到 Redis 的何種數據結構中。服務器
/** * 定義 tuple 與 Redis 中數據的映射關係 */ public class WordCountStoreMapper implements RedisStoreMapper { private RedisDataTypeDescription description; private final String hashKey = "wordCount"; public WordCountStoreMapper() { description = new RedisDataTypeDescription( RedisDataTypeDescription.RedisDataType.HASH, hashKey); } @Override public RedisDataTypeDescription getDataTypeDescription() { return description; } @Override public String getKeyFromTuple(ITuple tuple) { return tuple.getStringByField("word"); } @Override public String getValueFromTuple(ITuple tuple) { return tuple.getStringByField("count"); } }
/** * 進行詞頻統計 並將統計結果存儲到 Redis 中 */ public class WordCountToRedisApp { private static final String DATA_SOURCE_SPOUT = "dataSourceSpout"; private static final String SPLIT_BOLT = "splitBolt"; private static final String COUNT_BOLT = "countBolt"; private static final String STORE_BOLT = "storeBolt"; //在實際開發中這些參數能夠將經過外部傳入 使得程序更加靈活 private static final String REDIS_HOST = "192.168.200.226"; private static final int REDIS_PORT = 6379; public static void main(String[] args) { TopologyBuilder builder = new TopologyBuilder(); builder.setSpout(DATA_SOURCE_SPOUT, new DataSourceSpout()); // split builder.setBolt(SPLIT_BOLT, new SplitBolt()).shuffleGrouping(DATA_SOURCE_SPOUT); // count builder.setBolt(COUNT_BOLT, new CountBolt()).shuffleGrouping(SPLIT_BOLT); // save to redis JedisPoolConfig poolConfig = new JedisPoolConfig.Builder() .setHost(REDIS_HOST).setPort(REDIS_PORT).build(); RedisStoreMapper storeMapper = new WordCountStoreMapper(); RedisStoreBolt storeBolt = new RedisStoreBolt(poolConfig, storeMapper); builder.setBolt(STORE_BOLT, storeBolt).shuffleGrouping(COUNT_BOLT); // 若是外部傳參 cluster 則表明線上環境啓動不然表明本地啓動 if (args.length > 0 && args[0].equals("cluster")) { try { StormSubmitter.submitTopology("ClusterWordCountToRedisApp", new Config(), builder.createTopology()); } catch (AlreadyAliveException | InvalidTopologyException | AuthorizationException e) { e.printStackTrace(); } } else { LocalCluster cluster = new LocalCluster(); cluster.submitTopology("LocalWordCountToRedisApp", new Config(), builder.createTopology()); } } }
能夠用直接使用本地模式運行,也能夠打包後提交到服務器集羣運行。本倉庫提供的源碼默認採用 maven-shade-plugin
進行打包,打包命令以下:數據結構
# mvn clean package -D maven.test.skip=true
啓動後,查看 Redis 中的數據:併發
RedisLookupBolt
、RedisStoreBolt
、RedisFilterBolt
均繼承自 AbstractRedisBolt
抽象類,和咱們自定義實現 Bolt 同樣,AbstractRedisBolt
間接繼承自 BaseRichBolt
。
AbstractRedisBolt
中比較重要的是 prepare 方法,在該方法中經過外部傳入的 jedis 鏈接池配置 ( jedisPoolConfig/jedisClusterConfig) 建立用於管理 Jedis 實例的容器 JedisCommandsInstanceContainer
。
public abstract class AbstractRedisBolt extends BaseTickTupleAwareRichBolt { protected OutputCollector collector; private transient JedisCommandsInstanceContainer container; private JedisPoolConfig jedisPoolConfig; private JedisClusterConfig jedisClusterConfig; ...... @Override public void prepare(Map map, TopologyContext topologyContext, OutputCollector collector) { // FIXME: stores map (stormConf), topologyContext and expose these to derived classes this.collector = collector; if (jedisPoolConfig != null) { this.container = JedisCommandsContainerBuilder.build(jedisPoolConfig); } else if (jedisClusterConfig != null) { this.container = JedisCommandsContainerBuilder.build(jedisClusterConfig); } else { throw new IllegalArgumentException("Jedis configuration not found"); } } ....... }
JedisCommandsInstanceContainer
的 build()
方法以下,實際上就是建立 JedisPool 或 JedisCluster 並傳入容器中。
public static JedisCommandsInstanceContainer build(JedisPoolConfig config) { JedisPool jedisPool = new JedisPool(DEFAULT_POOL_CONFIG, config.getHost(), config.getPort(), config.getTimeout(), config.getPassword(), config.getDatabase()); return new JedisContainer(jedisPool); } public static JedisCommandsInstanceContainer build(JedisClusterConfig config) { JedisCluster jedisCluster = new JedisCluster(config.getNodes(), config.getTimeout(), config.getTimeout(), config.getMaxRedirections(), config.getPassword(), DEFAULT_POOL_CONFIG); return new JedisClusterContainer(jedisCluster); }
RedisStoreBolt
中比較重要的是 process 方法,該方法主要從 storeMapper 中獲取傳入 key/value 的值,並按照其存儲類型 dataType
調用 jedisCommand 的對應方法進行存儲。
RedisLookupBolt 的實現基本相似,從 lookupMapper 中獲取傳入的 key 值,並進行查詢操做。
public class RedisStoreBolt extends AbstractRedisBolt { private final RedisStoreMapper storeMapper; private final RedisDataTypeDescription.RedisDataType dataType; private final String additionalKey; public RedisStoreBolt(JedisPoolConfig config, RedisStoreMapper storeMapper) { super(config); this.storeMapper = storeMapper; RedisDataTypeDescription dataTypeDescription = storeMapper.getDataTypeDescription(); this.dataType = dataTypeDescription.getDataType(); this.additionalKey = dataTypeDescription.getAdditionalKey(); } public RedisStoreBolt(JedisClusterConfig config, RedisStoreMapper storeMapper) { super(config); this.storeMapper = storeMapper; RedisDataTypeDescription dataTypeDescription = storeMapper.getDataTypeDescription(); this.dataType = dataTypeDescription.getDataType(); this.additionalKey = dataTypeDescription.getAdditionalKey(); } @Override public void process(Tuple input) { String key = storeMapper.getKeyFromTuple(input); String value = storeMapper.getValueFromTuple(input); JedisCommands jedisCommand = null; try { jedisCommand = getInstance(); switch (dataType) { case STRING: jedisCommand.set(key, value); break; case LIST: jedisCommand.rpush(key, value); break; case HASH: jedisCommand.hset(additionalKey, key, value); break; case SET: jedisCommand.sadd(key, value); break; case SORTED_SET: jedisCommand.zadd(additionalKey, Double.valueOf(value), key); break; case HYPER_LOG_LOG: jedisCommand.pfadd(key, value); break; case GEO: String[] array = value.split(":"); if (array.length != 2) { throw new IllegalArgumentException("value structure should be longitude:latitude"); } double longitude = Double.valueOf(array[0]); double latitude = Double.valueOf(array[1]); jedisCommand.geoadd(additionalKey, longitude, latitude, key); break; default: throw new IllegalArgumentException("Cannot process such data type: " + dataType); } collector.ack(input); } catch (Exception e) { this.collector.reportError(e); this.collector.fail(input); } finally { returnInstance(jedisCommand); } } ......... }
JedisCommands 接口中定義了全部的 Redis 客戶端命令,它有如下三個實現類,分別是 Jedis、JedisCluster、ShardedJedis。Strom 中主要使用前兩種實現類,具體調用哪個實現類來執行命令,由傳入的是 jedisPoolConfig 仍是 jedisClusterConfig 來決定。
RedisMapper 和 TupleMapper 定義了 tuple 和 Redis 中的數據如何進行映射轉換。
TupleMapper 主要定義了兩個方法:
getKeyFromTuple(ITuple tuple): 從 tuple 中獲取那個字段做爲 Key;
getValueFromTuple(ITuple tuple):從 tuple 中獲取那個字段做爲 Value;
定義了獲取數據類型的方法 getDataTypeDescription()
,RedisDataTypeDescription 中 RedisDataType 枚舉類定義了全部可用的 Redis 數據類型:
public class RedisDataTypeDescription implements Serializable { public enum RedisDataType { STRING, HASH, LIST, SET, SORTED_SET, HYPER_LOG_LOG, GEO } ...... }
RedisStoreMapper 繼承 TupleMapper 和 RedisMapper 接口,用於數據存儲時,沒有定義額外方法。
RedisLookupMapper 繼承 TupleMapper 和 RedisMapper 接口:
下面的例子表示從輸入 Tuple
的獲取 word
字段做爲 key,使用 RedisLookupBolt
進行查詢後,將 key 和查詢結果 value 組裝爲 values 併發送到下一個處理單元。
class WordCountRedisLookupMapper implements RedisLookupMapper { private RedisDataTypeDescription description; private final String hashKey = "wordCount"; public WordCountRedisLookupMapper() { description = new RedisDataTypeDescription( RedisDataTypeDescription.RedisDataType.HASH, hashKey); } @Override public List<Values> toTuple(ITuple input, Object value) { String member = getKeyFromTuple(input); List<Values> values = Lists.newArrayList(); values.add(new Values(member, value)); return values; } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("wordName", "count")); } @Override public RedisDataTypeDescription getDataTypeDescription() { return description; } @Override public String getKeyFromTuple(ITuple tuple) { return tuple.getStringByField("word"); } @Override public String getValueFromTuple(ITuple tuple) { return null; } }
RedisFilterMapper 繼承 TupleMapper 和 RedisMapper 接口,用於查詢數據時,定義了 declareOutputFields 方法,聲明輸出的字段。以下面的實現:
@Override public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("wordName", "count")); }
自定義 RedisBolt:主要利用 Redis 中哈希結構的 hincrby key field
命令進行詞頻統計。在 Redis 中 hincrby
的執行效果以下。hincrby 能夠將字段按照指定的值進行遞增,若是該字段不存在的話,還會新建該字段,並賦值爲 0。經過這個命令能夠很是輕鬆的實現詞頻統計功能。
redis> HSET myhash field 5 (integer) 1 redis> HINCRBY myhash field 1 (integer) 6 redis> HINCRBY myhash field -1 (integer) 5 redis> HINCRBY myhash field -10 (integer) -5 redis>
/** * 自定義 RedisBolt 利用 Redis 的哈希數據結構的 hincrby key field 命令進行詞頻統計 */ public class RedisCountStoreBolt extends AbstractRedisBolt { private final RedisStoreMapper storeMapper; private final RedisDataTypeDescription.RedisDataType dataType; private final String additionalKey; public RedisCountStoreBolt(JedisPoolConfig config, RedisStoreMapper storeMapper) { super(config); this.storeMapper = storeMapper; RedisDataTypeDescription dataTypeDescription = storeMapper.getDataTypeDescription(); this.dataType = dataTypeDescription.getDataType(); this.additionalKey = dataTypeDescription.getAdditionalKey(); } @Override protected void process(Tuple tuple) { String key = storeMapper.getKeyFromTuple(tuple); String value = storeMapper.getValueFromTuple(tuple); JedisCommands jedisCommand = null; try { jedisCommand = getInstance(); if (dataType == RedisDataTypeDescription.RedisDataType.HASH) { jedisCommand.hincrBy(additionalKey, key, Long.valueOf(value)); } else { throw new IllegalArgumentException("Cannot process such data type for Count: " + dataType); } collector.ack(tuple); } catch (Exception e) { this.collector.reportError(e); this.collector.fail(tuple); } finally { returnInstance(jedisCommand); } } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { } }
/** * 利用自定義的 RedisBolt 實現詞頻統計 */ public class CustomRedisCountApp { private static final String DATA_SOURCE_SPOUT = "dataSourceSpout"; private static final String SPLIT_BOLT = "splitBolt"; private static final String STORE_BOLT = "storeBolt"; private static final String REDIS_HOST = "192.168.200.226"; private static final int REDIS_PORT = 6379; public static void main(String[] args) { TopologyBuilder builder = new TopologyBuilder(); builder.setSpout(DATA_SOURCE_SPOUT, new DataSourceSpout()); // split builder.setBolt(SPLIT_BOLT, new SplitBolt()).shuffleGrouping(DATA_SOURCE_SPOUT); // save to redis and count JedisPoolConfig poolConfig = new JedisPoolConfig.Builder() .setHost(REDIS_HOST).setPort(REDIS_PORT).build(); RedisStoreMapper storeMapper = new WordCountStoreMapper(); RedisCountStoreBolt countStoreBolt = new RedisCountStoreBolt(poolConfig, storeMapper); builder.setBolt(STORE_BOLT, countStoreBolt).shuffleGrouping(SPLIT_BOLT); // 若是外部傳參 cluster 則表明線上環境啓動,不然表明本地啓動 if (args.length > 0 && args[0].equals("cluster")) { try { StormSubmitter.submitTopology("ClusterCustomRedisCountApp", new Config(), builder.createTopology()); } catch (AlreadyAliveException | InvalidTopologyException | AuthorizationException e) { e.printStackTrace(); } } else { LocalCluster cluster = new LocalCluster(); cluster.submitTopology("LocalCustomRedisCountApp", new Config(), builder.createTopology()); } } }
更多大數據系列文章能夠參見 GitHub 開源項目: 大數據入門指南