Meanshift 算法的基本原理簡單,假設咱們有一堆點,和一個小的圓形窗口,Meanshift 算法就是不斷移動小圓形窗口,直到找到圓形區域內最大灰度密度處爲止.算法
初始窗口以藍色圓圈顯示,名稱爲「C1」,其原始中心標有藍色矩形,名爲「C1_o」.可是,這個窗口當中全部點的點集構成的質心在藍色圓形點處,圓環的型心和質心並不重合,因此,移動藍色的窗口以使型心與以前獲得的質心重合.
不斷執行上面的移動過程,直到型心和質心大體重合結束.
一般經過直方圖反投影圖像和初始目標位置,當物體移動時,移動反映在直方圖反投影圖像中,最後圓形的窗口會落到像素分佈最大的地方,也就是圖中的綠色圈並命名爲C2.app
首先要設定目標,並計算的直方圖,而後對這個直方圖在每一幀當中進行反向投影.須要提供一個初試的窗口位置,計算HSV模型當中H(色調)的直方圖,爲了不低亮度形成的影響,使用 cv2.inRange()
將低亮度值忽略.ide
import numpy as np import cv2 import matplotlib.pyplot as plt cap = cv2.VideoCapture('test.mp4') # take first frame of the video ret,frame = cap.read() # setup initial location of window r,h,c,w = 50,200,50,100 # simply hardcoded the values track_window = (c,r,w,h) # set up the ROI for tracking roi = frame[r:r+h, c:c+w] hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV) mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.))) roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180]) cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX) # Setup the termination criteria, either 10 iteration or move by atleast 1 pt term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 ) while(1): ret ,frame = cap.read() if ret == True: hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1) # apply meanshift to get the new location ret, track_window = cv2.CamShift(dst, track_window, term_crit) # Draw it on image pts = cv2.boxPoints(ret) pts = np.int0(pts) img2 = cv2.polylines(frame,[pts],True, 255,2) cv2.imshow('img2',img2) k = cv2.waitKey(60) & 0xff if k == 27: break else: cv2.imwrite(chr(k)+".jpg",img2) else: break cv2.destroyAllWindows() cap.release()
在目標跟蹤中,物體的大小不是固定的,因此設置的跟蹤窗口也應該隨之變化,CAMshift算法,首先使用meanshift算法找到目標,而後調整窗口大小,並且還會計算目標對象的的最佳外接圓的角度,並調整窗口,並使用調整後的窗口對物體繼續追蹤.spa
它與meanshift幾乎相同,但它返回一個旋轉的矩形.3d
import numpy as np import cv2 import matplotlib.pyplot as plt cap = cv2.VideoCapture('test.mp4') # take first frame of the video ret,frame = cap.read() # setup initial location of window r,h,c,w = 50,200,50,100 # simply hardcoded the values track_window = (c,r,w,h) # set up the ROI for tracking roi = frame[r:r+h, c:c+w] hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV) mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.))) roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180]) cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX) # Setup the termination criteria, either 10 iteration or move by atleast 1 pt term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 ) while(1): ret ,frame = cap.read() if ret == True: hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1) # apply meanshift to get the new location ret, track_window = cv2.CamShift(dst, track_window, term_crit) # Draw it on image pts = cv2.boxPoints(ret) pts = np.int0(pts) img2 = cv2.polylines(frame,[pts],True, 255,2) cv2.imshow('img2',img2) k = cv2.waitKey(60) & 0xff if k == 27: break else: cv2.imwrite(chr(k)+".jpg",img2) else: break cv2.destroyAllWindows() cap.release()