Roweis, Sam T. and Laurence K. Saul (2000). 「Nonlinear Dimensionality
Reduction by Locally Linear Embedding.」 Science, 290: 2323–2326.
doi:10.1126/science.290.5500.2323.html
we introduce locally linear embedding (LLE), an unsupervised learning algorithm that computes low-dimensional, neighborhood-preserving embeddings of high-dimensional inputs. Unlike clustering methods for local dimensionality reduction, LLE maps its inputs into a single global coordinate system of lower dimensionality, and its optimizations do not involve local minima.
LLE的本質是一種降維方法。主成分分析PCA是一種線性的降維方法,而LLE是一種非線性的降維方法。算法
近年來機器學習領域流行把降維以embedding的名義出現,具體含義是:When some object X is said to be embedded in another object Y, the embedding is given by some injective and structure-preserving map f : X → Yapp
關鍵:LLE的特性能夠理解爲neighborhood-preserving。less
LLE對流形數據保持neighborhood的效果比PCA好不少。什麼是流形數據?好比下圖這根螺旋狀的曲線。機器學習
若是用PCA對這種數據進行降維,即用第一主成分來描述這根曲線,是沒法保留數據螺旋形狀的順序(即降維後的座標從最密的中心點開始,沿着螺旋結構逐步往外擴)。下圖中的直線就是第一主成分的結果,能夠看到只捕獲到了方差最大的方向,structure-preserving的效果不好,根本緣由是線性降維沒法表達螺旋這種非線性結構:ide
那麼,有什麼方法能改進上面的結果呢?咱們取出螺旋數據的一個局部,對這個局部用PCA,咱們取出來的局部曲線曲度比較小,接近直線,這個使用PCA就能夠很好地擬合曲線:學習
LLE的核心思想就是這種截取局部線性擬合的思路。咱們看一下LLE做用後的效果:ui
再舉一個三維空間的例子:lua
看一下圖片識別的例子,橫軸和縱軸是LLE的頭兩個座標軸。對於橫軸而言,圖片人物的表情逐步從不開心變爲開心;對於縱軸而言,圖片人物臉的朝向從一側逐步變爲正面再到另一側。spa
LLE的基本流程以下圖所示:
基本公式以下:
以第三步爲例,看一下怎麼轉換爲特徵值求解問題:
下一步用朗格朗日乘子轉化爲無約束問題:
接着求導,發現是M的特徵值求解問題,由於目標是最小值,咱們取出最小的特徵值做爲結果:
R語言實現
# Local linear embedding of data vectors # Inputs: n*p matrix of vectors, number of dimensions q to find (< p), # number of nearest neighbors per vector, scalar regularization setting # Calls: find.kNNs, reconstruction.weights, coords.from.weights # Output: n*q matrix of new coordinates lle <- function(x,q,k=q+1,alpha=0.01) { stopifnot(q>0, q<ncol(x), k>q, alpha>0) # sanity checks kNNs = find.kNNs(x,k) # should return an n*k matrix of indices w = reconstruction.weights(x,kNNs,alpha) # n*n weight matrix coords = coords.from.weights(w,q) # n*q coordinate matrix return(coords) } # Find multiple nearest neighbors in a data frame # Inputs: n*p matrix of data vectors, number of neighbors to find, # optional arguments to dist function # Calls: smallest.by.rows # Output: n*k matrix of the indices of nearest neighbors find.kNNs <- function(x,k,...) { x.distances = dist(x,...) # Uses the built-in distance function x.distances = as.matrix(x.distances) # need to make it a matrix kNNs = smallest.by.rows(x.distances,k+1) # see text for +1 return(kNNs[,-1]) # see text for -1 } # Find the k smallest entries in each row of an array # Inputs: n*p array, p >= k, number of smallest entries to find # Output: n*k array of column indices for smallest entries per row smallest.by.rows <- function(m,k) { stopifnot(ncol(m) >= k) # Otherwise "k smallest" is meaningless row.orders = t(apply(m,1,order)) k.smallest = row.orders[,1:k] return(k.smallest) } # Least-squares weights for linear approx. of data from neighbors # Inputs: n*p matrix of vectors, n*k matrix of neighbor indices, # scalar regularization setting # Calls: local.weights # Outputs: n*n matrix of weights reconstruction.weights <- function(x,neighbors,alpha) { stopifnot(is.matrix(x),is.matrix(neighbors),alpha>0) n=nrow(x) stopifnot(nrow(neighbors) == n) w = matrix(0,nrow=n,ncol=n) for (i in 1:n) { i.neighbors = neighbors[i,] w[i,i.neighbors] = local.weights(x[i,],x[i.neighbors,],alpha) } return(w) } # Calculate local reconstruction weights from vectors # Inputs: focal vector (1*p matrix), k*p matrix of neighbors, # scalar regularization setting # Outputs: length k vector of weights, summing to 1 local.weights <- function(focal,neighbors,alpha) { # basic matrix-shape sanity checks stopifnot(nrow(focal)==1,ncol(focal)==ncol(neighbors)) # Should really sanity-check the rest (is.numeric, etc.) k = nrow(neighbors) # Center on the focal vector neighbors=t(t(neighbors)-focal) # exploits recycling rule, which # has a weird preference for columns gram = neighbors %*% t(neighbors) # Try to solve the problem without regularization weights = try(solve(gram,rep(1,k))) # The try function tries to evaluate its argument and returns # the value if successful; otherwise it returns an error # message of class "try-error" if (identical(class(weights),"try-error")) { # Un-regularized solution failed, try to regularize # TODO: look at the error, check if it’s something # regularization could fix! weights = solve(gram+alpha*diag(k),rep(1,k)) } # Enforce the unit-sum constraint weights = weights/sum(weights) return(weights) } # Get approximation weights from indices of point and neighbors # Inputs: index of focal point, n*p matrix of vectors, n*k matrix # of nearest neighbor indices, scalar regularization setting # Calls: local.weights # Output: vector of n reconstruction weights local.weights.for.index <- function(focal,x,NNs,alpha) { n = nrow(x) stopifnot(n> 0, 0 < focal, focal <= n, nrow(NNs)==n) w = rep(0,n) neighbors = NNs[focal,] wts = local.weights(x[focal,],x[neighbors,],alpha) w[neighbors] = wts return(w) } # Local linear approximation weights, without iteration # Inputs: n*p matrix of vectors, n*k matrix of neighbor indices, # scalar regularization setting # Calls: local.weights.for.index # Outputs: n*n matrix of reconstruction weights reconstruction.weights.2 <- function(x,neighbors,alpha) { # Sanity-checking should go here n = nrow(x) w = sapply(1:n,local.weights.for.index,x=x,NNs=neighbors, alpha=alpha) w = t(w) # sapply returns the transpose of the matrix we want return(w) } # Find intrinsic coordinates from local linear approximation weights # Inputs: n*n matrix of weights, number of dimensions q, numerical # tolerance for checking the row-sum constraint on the weights # Output: n*q matrix of new coordinates on the manifold coords.from.weights <- function(w,q,tol=1e-7) { n=nrow(w) stopifnot(ncol(w)==n) # Needs to be square # Check that the weights are normalized # to within tol > 0 to handle round-off error stopifnot(all(abs(rowSums(w)-1) < tol)) # Make the Laplacian M = t(diag(n)-w)%*%(diag(n)-w) # diag(n) is n*n identity matrix soln = eigen(M) # eigenvalues and eigenvectors (here, # eigenfunctions), in order of decreasing eigenvalue coords = soln$vectors[,((n-q):(n-1))] # bottom eigenfunctions # except for the trivial one return(coords) }
經過如下方式,咱們能夠將LLE算法用於Graph Embedding: