經常使用字符串匹配算法(brute force, kmp, sunday)

1. 暴力解法

// 暴力求解
int Idx(string S, string T){
    // 返回第一個匹配元素的位置,若沒有匹配的子串,則返回-1
    int S_size = S.length();
    int T_size = T.length();
    if(S_size == T_size && S_size == 0)
        return 0;
    if(S_size < T_size)
        return -1;

    int head = 0;
    int i = head;
    int j = 0;

    while(i < S_size && j < T_size){
        if(S[i] == T[j]){
            ++i;
            ++j;
            if(j == T_size && i <= S_size)
                return head;
        }
        else{
            ++head;
            i = head;// i回溯, 在kmp算法中,i不會出現回溯,即i值不會減少
            j = 0;
        }
    }
    return -1;
}

2. KMP (包括返回第一個匹配字符串的位置和返回全部匹配字符串的位置)

void PartialMatchTable(string s, int next[]){
    int len = s.length();
    next[0] = -1;
    int i = 0;
    int j = -1;

    while(i < len){
        if(j == -1 || s[i] == s[j]){
            ++i;
            ++j;
            next[i] = j;
        }
        else
            j = next[j];
    }
}

int kmp(string s, string p){
    int s_size = s.length();
    int p_size = p.length();

    int next[p_size];
    PartialMatchTable(p, next);
    int i = 0;
    int j = 0;
    while(i < s_size && j < p_size){
        if(j == -1 || s[i] == p[j]){
            i++;
            j++;
        }
        else{
            j = next[j];
        }
    }
    if(j == p_size)
        return i-j;
    else
        return -1;
}

// kmp_vec(string s, string p)找出全部匹配位置
vector<int> kmp_vec(string s, string p){
    int s_size = s.length();
    int p_size = p.length();
    vector<int> pos;

    int next[p_size];
    PartialMatchTable(p, next);
    int i = 0;
    int j = 0;
    while(i < s_size && j < p_size){
        if(j == -1 || s[i] == p[j]){
            i++;
            j++;
            if(j == p_size){
                pos.push_back(i-j);
                j = 0;
            }
        }
        else{
            j = next[j];
        }
    }

    if(pos.size() == 0)
        pos.push_back(-1);
    return pos;
}

3. Sunday

int SundaySearch(string t, string p){
    int t_size = t.size();
    int p_size = p.size();

    if(p_size <= 0 || t_size <= 0)
        return -1;

    int i = 0, j = 0;
    int k;
    int m = p_size;
    while(i < t_size){
        if(t[i] != p[j]) {// 不相等
            for(k = p_size-1; k>=0; --k) {
                if(p[k] == t[m])
                    break;
            }
            // i = i + p_size - k;
            i = m - k;
            j = 0;
            m = i + p_size;
        }
        else { // 相等,比較下一個字符
            i++;
            j++;
            if(j == p_size)
                return i-j;
        }
    }
    return -1;
}

4. 完整代碼

/*
* @Author: z.c.wang
* @Email:  iwangzhengchao@gmail.com
* @Last Modified time: 2019-01-23 14:39:58
*/
#include<iostream>
#include<string>
using namespace std;

/**
 * 方法1. brute force
 * 方法2. KMP (kmp_next, kmp_dfa)
 * 方法3. Sunday
 */

/**
 * brute_force description:
 * 暴力求解,在字符串s中匹配字符串p
 * @param  t [text, 文本串]
 * @param  p [pattern, 模式串]
 * @return   [若s含有p, 則返回第一個匹配的位置,不然,返回-1]
 */
int brute_force(string t, string p){
    int t_size = t.length();
    int p_size = p.length();
    if(t_size == p_size && t_size == 0)
        return 0;
    if(t_size < p_size)
        return -1;

    int head = 0;
    int i = head;
    int j = 0;
    while(i < t_size && j < p_size){
        if(t[i] == p[j]){
            i++;
            j++;
            if(j == p_size && i <= t_size)
                return head;
        }
        else{
            head++;
            i = head;
            j = 0;
        }
    }
    return -1;
}

// 暴力求解的另外一種寫法
int brute_force2(string t, string p){
    int t_size = t.length();
    int p_size = p.length();

    if(t_size == p_size && t_size == 0)
        return 0;
    if(t_size < p_size)
        return -1;

    int i, j;
    for(i = 0, j = 0; i < t_size && j < p_size; i++){
        if(t[i] == p[j]){
            j++;
        }
        else{
            i -= j;
            j = 0;
        }
    }
    if(j == p_size) // 找到匹配
        return i - j;
    else // 爲找到匹配
        return -1;
}

/**
 * ParticalMatchTable description:
 * 對字符串p生成next數組
 * @param p    [pattern string]
 * @param next [next數組]
 */
void ParticalMatchTable(string p, int next[]){
    int i = 0;
    int j = -1;
    next[0] = -1;

    while(i < p.length()){
        if(j == -1 || p[i] == p[j]){
            i++;
            j++;
            next[i] = j;
        }
        else{
            j = next[j];
        }
    }
}

/**
 * kmp algorithm based on next
 * kmp_next algorithm
 * @param  t [text string]
 * @param  p [pattern string]
 * @return   [若s含有p, 則返回第一個匹配的位置,不然,返回-1]
 */
int kmp_next(string t, string p){
    int t_size = t.length();
    int p_size = p.length();
    int next[p_size];
    ParticalMatchTable(p, next);

    int i = 0;
    int j = 0;
    while(i < t_size && j < p_size){
        if(j == -1 || t[i] == p[j]){
            i++;
            j++;
        }
        else{
            j = next[j];
        }
    }
    if(j == p_size)
        return i-j;
    else
        return -1;
}

/*kmp algorithm based on dfa */
int kmp_dfa(string t, string p){
    int row = 256;
    int col = p.length();

    // 動態分配數組並初始化
    int** dfa = new int*[row];
    for(int i = 0; i < row; i++)
        dfa[i] = new int[col];
    for(int i = 0 ; i < row ; i++)
        for(int j = 0; j < col; j++)
            dfa[i][j] = 0;

    // 計算dfa
    dfa[p[0]][0] = 1;
    for (int j = 1, x = 0; j < col; ++j) {
        for (int i = 0; i < row; ++i)
            dfa[i][j] = dfa[i][x];
        dfa[p[j]][j] = j + 1;
        x = dfa[p[j]][x];
    }

    //    kmp algo
    int i, j;
    int t_size = t.length();
    int p_size = p.length();
    for (i = 0, j = 0; i < t_size && j < p_size; i++){
          j = dfa[t[i]][j];
    }
    if(j == p_size)
        return i-j;
    else
        return -1;
}

/**
 * [Sunday description]
 * @param  t [description]
 * @param  p [description]
 * @return   [description]
 */
int Sunday(string t, string p){
    int t_size = t.length();
    int p_size = p.length();
    if(p_size == t_size && t_size == 0)
        return 0;
    if(p_size < 0 || t_size < 0)
        return -1;

    int i = 0;
    int j = 0;
    int k;
    int m = p_size;
    while(i < t_size){
        if(t[i] != p[j]){
            for(k = p_size-1; k >= 0; --k){
                if(p[k] == t[m])
                    break;
            }
            i = m - k;
            j = 0;
            m = i + p_size;
        }
        else{
            i++;
            j++;
            if(j == p_size)
                return i-j;
        }
    }
    return -1;
}

/**
 * [main description]
 * @param  argc [description]
 * @param  argv [description]
 * @return      [description]
 */
int main(int argc, char const *argv[])
{
    string t = "bbc abcdab abcdabcdabde";
    string p = "abcdabd";
    // brute force
    cout<<"brute_force : "<<brute_force(t, p)<<endl;
    // kmp_next
    cout<<"kmp_next : "<<kmp_next(t, p)<<endl;
    // kmp_dfa
    cout<<"kmp_dfa : "<<kmp_dfa(t, p)<<endl;
    // Sunday
    cout<<"Sunday : "<<Sunday(t, p)<<endl;
    cout<<endl;
    return 0;
}
View Code

5. 運行結果

brute_force : 15
kmp_next : 15
kmp_dfa : 15
Sunday : 15

6. 資料

D.M. Sunday: A Very Fast Substring Search Algorithm. Communications of the ACMhtml

阮一峯. 字符串匹配的KMP算法ios

July. 從頭至尾完全理解KMP(2014年8月22日版)算法

相關文章
相關標籤/搜索