StreamingListener 是針對spark streaming的各個階段的事件監聽機制。node
//須要監聽spark streaming中各個階段的事件只需實現這個特質中對應的事件函數便可 //自己既有註釋說明 trait StreamingListener { /** Called when the streaming has been started */ /** streaming 啓動的事件 */ def onStreamingStarted(streamingStarted: StreamingListenerStreamingStarted) { } /** Called when a receiver has been started */ /** 接收啓動事件 */ def onReceiverStarted(receiverStarted: StreamingListenerReceiverStarted) { } /** Called when a receiver has reported an error */ def onReceiverError(receiverError: StreamingListenerReceiverError) { } /** Called when a receiver has been stopped */ def onReceiverStopped(receiverStopped: StreamingListenerReceiverStopped) { } /** Called when a batch of jobs has been submitted for processing. */ /** 每一個批次提交的事件 */ def onBatchSubmitted(batchSubmitted: StreamingListenerBatchSubmitted) { } /** Called when processing of a batch of jobs has started. */ /** 每一個批次啓動的事件 */ def onBatchStarted(batchStarted: StreamingListenerBatchStarted) { } /** Called when processing of a batch of jobs has completed. */ /** 每一個批次完成的事件 */ def onBatchCompleted(batchCompleted: StreamingListenerBatchCompleted) { } /** Called when processing of a job of a batch has started. */ def onOutputOperationStarted( outputOperationStarted: StreamingListenerOutputOperationStarted) { } /** Called when processing of a job of a batch has completed. */ def onOutputOperationCompleted( outputOperationCompleted: StreamingListenerOutputOperationCompleted) { } }
功能:監控批次處理時間,若超過閾值則告警,每次告警間隔2分鐘redis
class SparkStreamingDelayListener(private val appName:String, private val duration: Int,private val times: Int) extends StreamingListener{ private val logger = LoggerFactory.getLogger("SparkStreamingDelayListener") //每一個批次完成時執行 override def onBatchCompleted(batchCompleted: StreamingListenerBatchCompleted): Unit = { val batchInfo = batchCompleted.batchInfo val processingStartTime = batchCompleted.batchInfo.processingStartTime val numRecords = batchCompleted.batchInfo.numRecords val processingEndTime = batchInfo.processingEndTime val processingDelay = batchInfo.processingDelay val totalDelay = batchInfo.totalDelay //將每次告警時間寫入redis,用以判斷告警間隔大於2分鐘 val jedis = RedisClusterClient.getJedisClusterClient() val current_time = (System.currentTimeMillis / 1000).toInt val redis_time = jedis.get(appName) var flag = false if(redis_time==null || current_time-redis_time.toInt>120){ jedis.set(appName,current_time.toString) flag = true } //若批次處理延遲大於批次時長指定倍數,而且告警間隔大約2分鐘,則告警 if(totalDelay.get >= times * duration * 1000 && flag){ val monitorContent = appName+": numRecords ->"+numRecords+",processingDelay ->"+processingDelay.get/1000+" s,totalDelay -> "+totalDelay.get/1000+"s" println(monitorContent) val msg = "Streaming_"+appName+"_DelayTime:"+totalDelay.get/1000+"S" val getURL = "http://node1:8002/message/weixin?msg="+msg HttpClient.doGet(getURL) } } }
//streamingListener不須要在配置中設置,能夠直接添加到streamingContext中 object My{ def main(args : Array[String]) : Unit = { val sparkConf = new SparkConf() val ssc = new StreamingContext(sparkConf,Seconds(20)) ssc.addStreamingListener(new SparkStreamingDelayListener("Userid2Redis", duration,times)) .... } }
訂閱關注微信公衆號《大數據技術進階》,及時獲取更多大數據架構和應用相關技術文章!
shell