本文主要介紹jdk中經常使用的同步控制工具以及併發容器, 其結構以下:node
簡而言之, 就是自由度更高的synchronized, 主要具有如下優勢.數組
示例 安全
1 public class ReenterLock implements Runnable { 2 public static ReentrantLock lock = new ReentrantLock(); 3 public static int i = 0; 4 5 @Override 6 public void run() { 7 for (int j = 0; j < 10000; j++) { 8 lock.lock(); 9 // 超時設置 10 // lock.tryLock(5, TimeUnit.SECONDS); 11 try { 12 i++; 13 } finally { 14 // 須要放在finally裏釋放, 若是上面lock了兩次, 這邊也要unlock兩次 15 lock.unlock(); 16 } 17 } 18 } 19 20 public static void main(String[] args) throws InterruptedException { 21 ReenterLock tl = new ReenterLock(); 22 Thread t1 = new Thread(tl); 23 Thread t2 = new Thread(tl); 24 t1.start(); 25 t2.start(); 26 t1.join(); 27 t2.join(); 28 System.out.println(i); 29 } 30 }
中斷死鎖多線程
線程1, 線程2分別去獲取lock1, lock2, 觸發死鎖. 最終經過DeadlockChecker來觸發線程中斷.併發
1 public class DeadLock implements Runnable{ 2 3 public static ReentrantLock lock1 = new ReentrantLock(); 4 public static ReentrantLock lock2 = new ReentrantLock(); 5 int lock; 6 7 public DeadLock(int lock) { 8 this.lock = lock; 9 } 10 11 @Override 12 public void run() { 13 try { 14 if (lock == 1){ 15 lock1.lockInterruptibly(); 16 try { 17 Thread.sleep(500); 18 }catch (InterruptedException e){} 19 lock2.lockInterruptibly(); 20 21 }else { 22 lock2.lockInterruptibly(); 23 try { 24 Thread.sleep(500); 25 }catch (InterruptedException e){} 26 lock1.lockInterruptibly(); 27 28 } 29 }catch (InterruptedException e){ 30 e.printStackTrace(); 31 }finally { 32 if (lock1.isHeldByCurrentThread()) 33 lock1.unlock(); 34 if (lock2.isHeldByCurrentThread()) 35 lock2.unlock(); 36 System.out.println(Thread.currentThread().getId() + "線程中斷"); 37 } 38 } 39 40 public static void main(String[] args) throws InterruptedException { 41 DeadLock deadLock1 = new DeadLock(1); 42 DeadLock deadLock2 = new DeadLock(2); 43 // 線程1, 線程2分別去獲取lock1, lock2. 致使死鎖 44 Thread t1 = new Thread(deadLock1); 45 Thread t2 = new Thread(deadLock2); 46 t1.start(); 47 t2.start(); 48 Thread.sleep(1000); 49 // 死鎖檢查, 觸發中斷 50 DeadlockChecker.check(); 51 52 } 53 }
1 public class DeadlockChecker { 2 private final static ThreadMXBean mbean = ManagementFactory.getThreadMXBean(); 3 final static Runnable deadLockCheck = new Runnable() { 4 @Override 5 public void run() { 6 while (true) { 7 long[] deadlockedThreadlds = mbean.findDeadlockedThreads(); 8 9 if (deadlockedThreadlds != null) { 10 ThreadInfo[] threadInfos = mbean.getThreadInfo(deadlockedThreadlds); 11 for (Thread t : Thread.getAllStackTraces().keySet()) { 12 for (int i = 0; i < threadInfos.length; i++) { 13 if (t.getId() == threadInfos[i].getThreadId()) { 14 t.interrupt(); 15 try { 16 Thread.sleep(5000); 17 } catch (InterruptedException e) { 18 } 19 } 20 } 21 } 22 } 23 } 24 } 25 }; 26 27 public static void check() { 28 Thread t = new Thread(deadLockCheck); 29 t.setDaemon(true); 30 t.start(); 31 } 32 }
相似於 Object.wait()和Object.notify(), 須要與ReentrantLock結合使用.dom
具體API以下:ide
1 // await()方法會使當前線程等待,同時釋放當前鎖,當其餘線程中使用signal()時或者signalAll()方法時, 2 // 線程會從新得到鎖並繼續執行。或者當線程被中斷時,也能跳出等待。這和Object.wait()方法很類似。 3 void await() throws InterruptedException; 4 // awaitUninterruptibly()方法與await()方法基本相同,可是它並不會再等待過程當中響應中斷。 5 void awaitUninterruptibly(); 6 long awaitNanos(long nanosTimeout) throws InterruptedException; 7 boolean await(long time, TimeUnit unit) throws InterruptedException; 8 boolean awaitUntil(Date deadline) throws InterruptedException; 9 // singal()方法用於喚醒一個在等待中的線程。相對的singalAll()方法會喚醒全部在等待中的線程。 10 // 這和Obejct.notify()方法很相似。 11 void signal(); 12 void signalAll();
示例函數
1 public class ReenterLockCondition implements Runnable{ 2 3 public static ReentrantLock lock = new ReentrantLock(); 4 public static Condition condition = lock.newCondition(); 5 6 @Override 7 public void run() { 8 try { 9 lock.lock(); 10 condition.await(); 11 System.out.println("Thread is going on"); 12 } catch (InterruptedException e) { 13 e.printStackTrace(); 14 } finally { 15 // 注意放到finally中釋放 16 lock.unlock(); 17 } 18 } 19 20 public static void main(String[] args) throws InterruptedException { 21 ReenterLockCondition t1 = new ReenterLockCondition(); 22 Thread tt = new Thread(t1); 23 tt.start(); 24 Thread.sleep(2000); 25 System.out.println("after sleep, signal!"); 26 // 通知線程tt繼續執行. 喚醒一樣須要從新得到鎖 27 lock.lock(); 28 condition.signal(); 29 lock.unlock(); 30 } 31 }
鎖通常都是互斥排他的, 而信號量能夠認爲是一個共享鎖,高併發
容許N個線程同時進入臨界區, 可是超出許可範圍的只能等待.工具
若是N = 1, 則相似於lock.
具體API以下, 經過acquire獲取信號量, 經過release釋放
1 public void acquire() 2 public void acquireUninterruptibly() 3 public boolean tryAcquire() 4 public boolean tryAcquire(long timeout, TimeUnit unit) 5 public void release()
示例
模擬20個線程, 可是信號量只設置了5個許可.
所以線程是按序每2秒5個的打印job done.
1 public class SemapDemo implements Runnable{ 2 3 // 設置5個許可 4 final Semaphore semp = new Semaphore(5); 5 6 @Override 7 public void run() { 8 try { 9 semp.acquire(); 10 // 模擬線程耗時操做 11 Thread.sleep(2000L); 12 System.out.println("Job done! " + Thread.currentThread().getId()); 13 } catch (InterruptedException e) { 14 e.printStackTrace(); 15 } finally { 16 semp.release(); 17 } 18 } 19 20 public static void main(String[] args){ 21 ExecutorService service = Executors.newFixedThreadPool(20); 22 final SemapDemo demo = new SemapDemo(); 23 for (int i = 0; i < 20; i++) { 24 service.submit(demo); 25 } 26 } 27 }
讀寫分離鎖, 能夠大幅提高系統並行度.
示例
使用方法與ReentrantLock相似, 只是讀寫鎖分離.
1 private static ReentrantReadWriteLock readWriteLock=new ReentrantReadWriteLock(); 2 private static Lock readLock = readWriteLock.readLock(); 3 private static Lock writeLock = readWriteLock.writeLock();
一種典型的場景就是火箭發射。在火箭發射前,爲了保證萬無一失,每每還要進行各項設備、儀器的檢查。
只有等全部檢查完畢後,引擎才能點火。這種場景就很是適合使用CountDownLatch。它可使得點火線程,
等待全部檢查線程所有完工後,再執行.
示例
1 public class CountDownLatchDemo implements Runnable{ 2 static final CountDownLatch end = new CountDownLatch(10); 3 static final CountDownLatchDemo demo = new CountDownLatchDemo(); 4 5 @Override 6 public void run() { 7 try { 8 Thread.sleep(new Random().nextInt(10) * 1000); 9 System.out.println("check complete!"); 10 end.countDown(); 11 } catch (InterruptedException e) { 12 e.printStackTrace(); 13 } 14 } 15 16 public static void main(String[] args) throws InterruptedException { 17 ExecutorService service = Executors.newFixedThreadPool(10); 18 for (int i = 0; i < 10; i++) { 19 service.submit(demo); 20 } 21 // 等待檢查 22 end.await(); 23 // 全部線程檢查完畢, 發射火箭. 24 System.out.println("fire"); 25 service.shutdown(); 26 } 27 }
Cyclic意爲循環,也就是說這個計數器能夠反覆使用。好比,假設咱們將計數器設置爲10。那麼湊齊
第一批10個線程後,計數器就會歸零,而後接着湊齊下一批10個線程.
示例
1 public class CyclicBarrierDemo { 2 3 public static class Soldier implements Runnable { 4 5 private String soldier; 6 private final CyclicBarrier cyclic; 7 8 Soldier(CyclicBarrier cyclic, String soldier) { 9 this.cyclic = cyclic; 10 this.soldier = soldier; 11 } 12 13 @Override 14 public void run() { 15 try { 16 // 等待全部士兵到期 17 cyclic.await(); 18 doWork(); 19 // 等待全部士兵完成工做 20 cyclic.await(); 21 } catch (InterruptedException e) { 22 e.printStackTrace(); 23 } catch (BrokenBarrierException e) { 24 e.printStackTrace(); 25 } 26 } 27 28 void doWork() { 29 try { 30 Thread.sleep(Math.abs(new Random().nextInt() % 10000)); 31 } catch (InterruptedException e) { 32 e.printStackTrace(); 33 } 34 System.out.println(soldier + " 任務完成!"); 35 } 36 } 37 38 public static class BarrierRun implements Runnable { 39 boolean flag; 40 int N; 41 42 public BarrierRun(boolean flag, int n) { 43 this.flag = flag; 44 N = n; 45 } 46 47 @Override 48 public void run() { 49 if (flag) { 50 System.out.println("士兵:" + N + "個, 任務完成!"); 51 } else { 52 System.out.println("士兵:" + N + "個, 集合完畢!"); 53 flag = true; 54 } 55 } 56 } 57 58 public static void main(String[] args){ 59 final int N = 5; 60 Thread[] allSoldier = new Thread[N]; 61 boolean flag = false; 62 CyclicBarrier cyclic = new CyclicBarrier(N, new BarrierRun(flag, N)); 63 // 設置屏障點, 主要爲了執行這個方法. 64 System.out.println("集合任務!"); 65 for (int i = 0; i < N; i++) { 66 System.out.println("士兵" + i + " 報到!"); 67 allSoldier[i] = new Thread(new Soldier(cyclic, "士兵" + i)); 68 allSoldier[i].start(); 69 } 70 71 } 72 }
結果
集合任務!
士兵0 報到!
士兵1 報到!
士兵2 報到!
士兵3 報到!
士兵4 報到!
士兵:5個, 集合完畢!
士兵3 任務完成!
士兵1 任務完成!
士兵0 任務完成!
士兵4 任務完成!
士兵2 任務完成!
士兵:5個, 任務完成!
一個線程阻塞工具, 能夠在任意位置讓線程阻塞.
與suspend()比較, 若是unpark發生在park以前, 並不會致使線程凍結, 也不須要獲取鎖.
API
1 LockSupport.park(); 2 LockSupport.unpark(t1);
中斷響應
可以響應中斷,但不拋出異常。
中斷響應的結果是,park()函數的返回,能夠從Thread.interrupted()獲得中斷標誌
1 public class LockSupportDemo { 2 public static Object u = new Object(); 3 static ChangeObjectThread t1 = new ChangeObjectThread("t1"); 4 static ChangeObjectThread t2 = new ChangeObjectThread("t2"); 5 public static class ChangeObjectThread extends Thread { 6 7 public ChangeObjectThread(String name) { 8 super(name); 9 } 10 11 @Override 12 public void run() { 13 synchronized (u) { 14 System.out.println("in " + getName()); 15 LockSupport.park(); 16 } 17 } 18 } 19 20 public static void main(String[] args) throws InterruptedException { 21 t1.start(); 22 Thread.sleep(100); 23 t2.start(); 24 LockSupport.unpark(t1); 25 LockSupport.unpark(t2); 26 t1.join(); 27 t2.join(); 28 } 29 }
其本質是在讀寫map操做上都加了鎖, 所以不推薦在高併發場景使用.
內部使用分區Segment來表示不一樣的部分, 每一個分區其實就是一個小的hashtable. 各自有本身的鎖.
只要多個修改發生在不一樣的分區, 他們就能夠併發的進行. 把一個總體分紅了16個Segment, 最高支持16個線程併發修改.
代碼中運用了不少volatile聲明共享變量, 第一時間獲取修改的內容, 性能較好.
1 public V put(K key, V value) { 2 ConcurrentHashMap.Segment<K,V> s; 3 if (value == null) 4 throw new NullPointerException(); 5 int hash = hash(key); 6 int j = (hash >>> segmentShift) & segmentMask; 7 // 經過unsafe對j進行偏移來尋找key所對應的分區 8 if ((s = (ConcurrentHashMap.Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck 9 (segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment 10 // 若是分區不存在, 則建立新的分區 11 s = ensureSegment(j); 12 // kv放到分區中 13 return s.put(key, hash, value, false); 14 }
Segment.put源碼
1 Segment(float lf, int threshold, ConcurrentHashMap.HashEntry<K,V>[] tab) { 2 this.loadFactor = lf; 3 this.threshold = threshold; 4 this.table = tab; 5 } 6 7 final V put(K key, int hash, V value, boolean onlyIfAbsent) { 8 // tryLock經過無鎖cas操做嘗試獲取鎖(無等待), 繼承自ReentrantLock. 9 // 若是成功則, node = null 10 // 若是不成功, 則可能其餘線程已經在插入數據了, 11 // 此時會嘗試繼續獲取鎖tryLock, 自旋MAX_SCAN_RETRIES次, 若仍是拿不到鎖纔開始lock 12 ConcurrentHashMap.HashEntry<K,V> node = tryLock() ? null : 13 scanAndLockForPut(key, hash, value); 14 V oldValue; 15 try { 16 ConcurrentHashMap.HashEntry<K,V>[] tab = table; 17 // 獲取分區中哪個entry鏈的index 18 int index = (tab.length - 1) & hash; 19 // 獲取第一個entry 20 ConcurrentHashMap.HashEntry<K,V> first = entryAt(tab, index); 21 for (ConcurrentHashMap.HashEntry<K,V> e = first;;) { 22 // e != null , 存在hash衝突, 把他加到當前鏈表中 23 if (e != null) { 24 K k; 25 if ((k = e.key) == key || 26 (e.hash == hash && key.equals(k))) { 27 oldValue = e.value; 28 if (!onlyIfAbsent) { 29 e.value = value; 30 ++modCount; 31 } 32 break; 33 } 34 e = e.next; 35 } 36 else { 37 // 無hash衝突, new entry 38 if (node != null) 39 node.setNext(first); 40 else 41 node = new ConcurrentHashMap.HashEntry<K,V>(hash, key, value, first); 42 int c = count + 1; 43 // 空間大小超出閾值, 須要rehash, 翻倍空間. 44 if (c > threshold && tab.length < MAXIMUM_CAPACITY) 45 rehash(node); 46 else 47 //放到分區中 48 setEntryAt(tab, index, node); 49 ++modCount; 50 count = c; 51 oldValue = null; 52 break; 53 } 54 } 55 } finally { 56 unlock(); 57 } 58 return oldValue; 59 }
若是想要對ConcurrentHashMap排序, 則可使用ConcurrentSkipListMap,
他支持併發排序, 是一個線程安全的相似TreeMap的實現.
阻塞隊列, 主要用於多線程之間共享數據.
當一個線程讀取數據時, 若是隊列是空的, 則當前線程會進入等待狀態.
若是隊列滿了, 當一個線程嘗試寫入數據時, 一樣會進入等待狀態.
適用於生產消費者模型.
其源碼實現也相對簡單.
1 public void put(E e) throws InterruptedException { 2 checkNotNull(e); 3 final ReentrantLock lock = this.lock; 4 lock.lockInterruptibly(); 5 try { 6 // 隊列滿了, 寫進入等待 7 while (count == items.length) 8 notFull.await(); 9 insert(e); 10 } finally { 11 lock.unlock(); 12 } 13 } 14 15 public E take() throws InterruptedException { 16 final ReentrantLock lock = this.lock; 17 lock.lockInterruptibly(); 18 try { 19 // 隊列空的, 讀進入等待 20 while (count == 0) 21 notEmpty.await(); 22 return extract(); 23 } finally { 24 lock.unlock(); 25 } 26 }
由於BlockingQueue在put take等操做有鎖, 所以非高性能容器,
若是須要高併發支持的隊列, 則可使用ConcurrentLinkedQueue. 他內部也是運用了大量無鎖操做.
CopyOnWriteArrayList經過在新增元素時, 複製一份新的數組出來, 並在其中寫入數據, 以後將原數組引用指向到新數組.
其Add操做是在內部經過ReentrantLock進行鎖保護, 防止多線程場景複製多份數組.
而Read操做內部無鎖, 直接返回數組引用, 併發下效率高, 所以適用於讀多寫少的場景.
源碼
1 public boolean add(E e) { 2 final ReentrantLock lock = this.lock; 3 // 寫數據的鎖 4 lock.lock(); 5 try { 6 Object[] elements = getArray(); 7 int len = elements.length; 8 // 複製到新的數組 9 Object[] newElements = Arrays.copyOf(elements, len + 1); 10 // 加入新元素 11 newElements[len] = e; 12 // 修改引用 13 setArray(newElements); 14 return true; 15 } finally { 16 lock.unlock(); 17 } 18 } 19 20 final void setArray(Object[] a) { 21 array = a; 22 } 23 24 // 讀的時候無鎖 25 public E get(int index) { 26 return get(getArray(), index); 27 }
示例
使用10個讀線程, 100個寫線程. 若是使用ArrayList實現, 那麼有多是在運行過程當中拋出ConcurrentModificationException.
緣由很簡單, ArrayList在遍歷的時候會check modCount是否發生變化, 若是一邊讀一邊寫就會拋異常.
1 public class CopyOnWriteListDemo { 2 3 static List<UUID> list = new CopyOnWriteArrayList<UUID>(); 4 // static List<UUID> list = new ArrayList<UUID>(); 5 6 // 往list中寫數據 7 public static class AddThread implements Runnable { 8 9 @Override 10 public void run() { 11 UUID uuid = UUID.randomUUID(); 12 list.add(uuid); 13 System.out.println("++Add uuid : " + uuid); 14 15 } 16 } 17 18 // 從list中讀數據 19 public static class ReadThread implements Runnable { 20 21 @Override 22 public void run() { 23 System.out.println("start read size: " + list.size() + " thread : " + Thread.currentThread().getName()); 24 for (UUID uuid : list) { 25 System.out.println("Read uuid : " + uuid + " size : " + list.size() + "thread: " + Thread.currentThread().getName()); 26 } 27 } 28 } 29 30 31 public static void main(String[] args) throws InterruptedException { 32 initThread(new AddThread(), 10); 33 initThread(new ReadThread(), 100); 34 } 35 36 private static void initThread(Runnable runnable, int maxNum) throws InterruptedException { 37 Thread[] ts = new Thread[maxNum]; 38 for (int k = 0; k < maxNum; k++) { 39 ts[k] = new Thread(runnable); 40 } 41 for (int k = 0; k < maxNum; k++) { 42 ts[k].start(); 43 } 44 } 45 }
下圖運行結果中能夠看出來, 同一個線程, 即便在讀的過程當中發生了size變化, 也不會拋出ConcurrentModificationException