任務提交
以前在分析線程池的時候,提到過 AbstractExecutorService 的實現:html
public Future<?> submit(Runnable task) { if (task == null) throw new NullPointerException(); RunnableFuture<Void> ftask = newTaskFor(task, null); execute(ftask); return ftask; } public <T> Future<T> submit(Runnable task, T result) { if (task == null) throw new NullPointerException(); RunnableFuture<T> ftask = newTaskFor(task, result); execute(ftask); return ftask; } public <T> Future<T> submit(Callable<T> task) { if (task == null) throw new NullPointerException(); RunnableFuture<T> ftask = newTaskFor(task); execute(ftask); return ftask; } protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) { return new FutureTask<T>(runnable, value); } protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) { return new FutureTask<T>(callable); }
對於 submit 提交的任務,無論是 Runnable 仍是 Callable,最終都會統一爲 FutureTask 並傳給 execute 方法。node
public FutureTask(Callable<V> callable) { if (callable == null) throw new NullPointerException(); this.callable = callable; this.state = NEW; // ensure visibility of callable } public FutureTask(Runnable runnable, V result) { this.callable = Executors.callable(runnable, result); this.state = NEW; // ensure visibility of callable }
對於 Runnable 還會建立一個適配器 :多線程
static final class RunnableAdapter<T> implements Callable<T> { final Runnable task; final T result; RunnableAdapter(Runnable task, T result) { this.task = task; this.result = result; } public T call() { task.run(); return result; } }
任務狀態
FutureTask 有下面幾種狀態:this
private volatile int state; private static final int NEW = 0; private static final int COMPLETING = 1; private static final int NORMAL = 2; private static final int EXCEPTIONAL = 3; private static final int CANCELLED = 4; private static final int INTERRUPTING = 5; private static final int INTERRUPTED = 6;
初次建立的時候構造器中賦值 state = NEW,後面狀態可能有下面幾種演化:spa
- NEW -> COMPLETING -> NORMAL (正常完成的過程)
- NEW -> COMPLETING -> EXCEPTIONAL (執行過程當中遇到異常)
- NEW -> CANCELLED (執行前被取消)
- NEW -> INTERRUPTING -> INTERRUPTED (取消時被中斷)
任務執行
當線程池執行任務的時候,最終都會執行 FutureTask 的 run 方法:線程
public void run() { if (state != NEW || !UNSAFE.compareAndSwapObject(this, runnerOffset, null, Thread.currentThread())) return; try { Callable<V> c = callable; if (c != null && state == NEW) { V result; boolean ran; try { result = c.call(); ran = true; } catch (Throwable ex) { result = null; ran = false; setException(ex); } if (ran) set(result); } } finally { // runner must be non-null until state is settled to // prevent concurrent calls to run() runner = null; // state must be re-read after nulling runner to prevent // leaked interrupts int s = state; if (s >= INTERRUPTING) handlePossibleCancellationInterrupt(s); } }
對於 Callable 直接執行其 call 方法。執行成功則調用 set 方法設置結果,若是遇到異常則調用 setException 設置異常:code
protected void set(V v) { // 首先 CAS 設置 state 爲中間狀態 COMPLETING if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) { outcome = v; // 設置爲正常狀態 UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state finishCompletion(); } } protected void setException(Throwable t) { if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) { outcome = t; // 設置爲異常狀態 UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state finishCompletion(); } }
這兩個方法都是對全局變量 outcome 的賦值。當咱們經過 get 方法獲取結果時,每每是在另外一個線程:htm
public V get() throws InterruptedException, ExecutionException { int s = state; if (s <= COMPLETING) s = awaitDone(false, 0L); return report(s); }
若是任務尚未完成則等待任務完成:blog
private int awaitDone(boolean timed, long nanos) throws InterruptedException { final long deadline = timed ? System.nanoTime() + nanos : 0L; WaitNode q = null; boolean queued = false; // 經過 for 循環來阻塞當前線程 for (;;) { // 響應中斷 if (Thread.interrupted()) { removeWaiter(q); throw new InterruptedException(); } int s = state; // 任務已完成或者已拋出異常 直接返回 if (s > COMPLETING) { // WaitNode已建立此時也沒用了 if (q != null) q.thread = null; return s; } else if (s == COMPLETING) // cannot time out yet Thread.yield(); else if (q == null) q = new WaitNode(); else if (!queued) queued = UNSAFE.compareAndSwapObject(this, waitersOffset, q.next = waiters, q); else if (timed) { nanos = deadline - System.nanoTime(); if (nanos <= 0L) { removeWaiter(q); return state; } LockSupport.parkNanos(this, nanos); } else LockSupport.park(this); } }
若是任務已完成或者等待任務直到完成後,調用 report 方法返回結果:rem
private V report(int s) throws ExecutionException { Object x = outcome; if (s == NORMAL) return (V)x; if (s >= CANCELLED) throw new CancellationException(); throw new ExecutionException((Throwable)x); }
若是 state == NORMAL,標識任務正常完成,返回實際結果。若是 state >= CANCELLED, 則返回 CancellationException,不然返回 ExecutionException,這樣在線程池中執行的任務無論是異常仍是正常返回告終果,都能被感知。
Treiber Stack
/** * Simple linked list nodes to record waiting threads in a Treiber * stack. See other classes such as Phaser and SynchronousQueue * for more detailed explanation. */ static final class WaitNode { volatile Thread thread; volatile WaitNode next; WaitNode() { thread = Thread.currentThread(); } }
在 awaitDone 方法中 WaitNode q = null,第一次會建立一個 WaitNode,這時即便有多個線程在等待結果,都會建立各自的 WaitNode:
else if (q == null) q = new WaitNode(); else if (!queued) queued = UNSAFE.compareAndSwapObject(this, waitersOffset, q.next = waiters, q);
而後在for循環中會跳到第二個 else if,因爲沒有入隊,這時會經過 CAS 將新建的 WaitNode 類型的 q 賦值給 waiters,這個時候同一時刻只有一個線程能賦值成功,後一個在失敗後又經歷一次循環,最終成功地將當前 WaitNode 插入到 waiters 的頭部。
任務取消
FutureTask 有一個 cancel 方法,包含一個 boolean 類型的參數(在執行中的任務是否能夠中斷):
public boolean cancel(boolean mayInterruptIfRunning) { // 若是任務不是剛建立或者是剛建立可是更改成指定狀態失敗則返回 false if (!(state == NEW && UNSAFE.compareAndSwapInt(this, stateOffset, NEW, mayInterruptIfRunning ? INTERRUPTING : CANCELLED))) return false; try { // in case call to interrupt throws exception if (mayInterruptIfRunning) { try { Thread t = runner; if (t != null) t.interrupt(); } finally { // final state UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED); } } } finally { finishCompletion(); } return true; }
最終都會調用 finishCompletion() ,在 set 方法和 setException 方法中也調用了這個 finishCompletion 方法:
private void finishCompletion() { // assert state > COMPLETING; // 若是任務執行完或者存在異常的話 這個waiters已經爲null了 for (WaitNode q; (q = waiters) != null;) { // 首先不斷嘗試把 waiters 設置爲 null,若是不少線程調用 task.cancel(),也只有一個能成功 if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) { for (;;) { Thread t = q.thread; // 當線程不爲空時 喚醒等待的線程 if (t != null) { q.thread = null; LockSupport.unpark(t); } WaitNode next = q.next; if (next == null) break; q.next = null; // unlink to help gc q = next; } break; } } done(); callable = null; // to reduce footprint }
當在 finishCompletion 方法中喚醒線程後,被喚醒的線程在 awaitDone 方法中繼續循環,發現狀態已完成:
int s = state; // 任務已完成或者已拋出異常 直接返回 if (s > COMPLETING) { // WaitNode已建立此時也沒用了 if (q != null) q.thread = null; return s; }
接着調用 report 方法,發現狀態爲異常的話將包裝成 ExecutionException((Throwable)x); 這個異常就是咱們在使用 get 的時候須要捕獲的異常。
最近比較忙,這塊東西已經好久沒有看了, FutureTask 感受沒有完全弄明白,也沒有一個好的結尾,如今這裏標記下,後面繼續更新。
原文出處:https://www.cnblogs.com/lucare/p/10316808.html