指定的經緯度是否落在多邊形內 java版

這個想法算法就是判斷一個點向左的射線跟一個多邊形的交叉點有幾個,若是結果爲奇數的話那麼說明這個點落在多邊形中,反之則不在。算法

A:數組

B:this

C:spa

D:.net

E:3d

no1:code

no2:blog

y1:get

y2:it

以上的ABCDE,分別是如下數組裏面的數據

1 Point[] ps = new Point[] { new Point(120.2043 , 30.2795), new Point(120.2030 , 30.2511), new Point(120.1810 , 30.2543), new Point(120.1798 , 30.2781), new Point(120.1926,30.2752) };

 

 1 package com.cmcc.monitor.test;
 2 
 3 public class GisTest {
 4 
 5     public static void main(String[] args) {
 6         Point[] ps = new Point[] { new Point(120.2043 , 30.2795), new Point(120.2030 , 30.2511), new Point(120.1810 , 30.2543), new Point(120.1798 , 30.2781), new Point(120.1926,30.2752) };
 7         Point n1 = new Point(120.1936 , 30.2846);
 8         Point n2 = new Point(120.1823 , 30.2863);
 9         Point n3 = new Point(120.2189 , 30.2712);
10         Point y1 = new Point(120.1902 , 30.2712);
11         Point y2 = new Point(120.1866 , 30.2672);
12         Point y4 = new Point(120.1869 , 30.2718);
13         System.out.println( "n1:" + isPtInPoly(n1.getX() , n1.getY() , ps));
14         System.out.println( "n2:" + isPtInPoly(n2.getX() , n2.getY() , ps));
15         System.out.println( "n3:" + isPtInPoly(n3.getX() , n3.getY() , ps));
16         System.out.println( "y1:" + isPtInPoly(y1.getX() , y1.getY() , ps));
17         System.out.println( "y2:" + isPtInPoly(y2.getX() , y2.getY() , ps));
18         System.out.println( "y4:" + isPtInPoly(y4.getX() , y4.getY() , ps));
19     }
20     public static boolean isPtInPoly (double ALon , double ALat , Point[] ps) {
21         int iSum, iCount, iIndex;
22         double dLon1 = 0, dLon2 = 0, dLat1 = 0, dLat2 = 0, dLon;
23         if (ps.length < 3) {
24             return false;
25         }
26         iSum = 0;
27         iCount = ps.length;
28         for (iIndex = 0; iIndex<iCount;iIndex++) {
29             if (iIndex == iCount - 1) {
30                 dLon1 = ps[iIndex].getX();
31                 dLat1 = ps[iIndex].getY();
32                 dLon2 = ps[0].getX();
33                 dLat2 = ps[0].getY();
34             } else {
35                 dLon1 = ps[iIndex].getX();
36                 dLat1 = ps[iIndex].getY();
37                 dLon2 = ps[iIndex + 1].getX();
38                 dLat2 = ps[iIndex + 1].getY();
39             }
40             // 如下語句判斷A點是否在邊的兩端點的水平平行線之間,在則可能有交點,開始判斷交點是否在左射線上
41             if (((ALat >= dLat1) && (ALat < dLat2)) || ((ALat >= dLat2) && (ALat < dLat1))) {
42                 if (Math.abs(dLat1 - dLat2) > 0) {
43                     //獲得 A點向左射線與邊的交點的x座標:
44                     dLon = dLon1 - ((dLon1 - dLon2) * (dLat1 - ALat) ) / (dLat1 - dLat2);
45                     // 若是交點在A點左側(說明是作射線與 邊的交點),則射線與邊的所有交點數加一:
46                     if (dLon < ALon) {
47                         iSum++;
48                     }
49                 }
50             }
51         }
52         if ((iSum % 2) != 0) {
53             return true;
54         }
55         return false;
56     }
57 }

 

 1 package com.cmcc.monitor.test;
 2 
 3 public class Point {
 4     private Double x;
 5     private Double y;
 6     public Point (Double x , Double y) {
 7         this.x = x;
 8         this.y = y;
 9     }
10     public Double getX() {
11         return x;
12     }
13     public void setX(Double x) {
14         this.x = x;
15     }
16     public Double getY() {
17         return y;
18     }
19     public void setY(Double y) {
20         this.y = y;
21     }
22     
23 }

 

原文連接:https://blog.csdn.net/qq_22929803/article/details/46818009

相關文章
相關標籤/搜索