數學文獻閱讀

S. Gala, A note on div-curl lemma, Serdica Math. J., 33 (2007), 339--350.app

 

E.M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals.dom

 Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. PrincetonUniversity Press, Princeton, NJ, 1993.curl

 

C. Fefferman, E.M. Stein, $H^p$ spaces of several variables, Acta Math., 129 (1972), 137--193.ide

 

E. Gagliardo, Propriet\'a di alcune classi di funzioni in pi\'u variabili, Ricerche Mat., 7 (1958), 102--137.函數

 

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115--162.ui

 

Y.K. Cho, Multiplicative Sobolev inequalities of the Ladyzhenskaya type, Math. Inequal. Appl., 14 (2011), 335--341.url

 

V.A. Solonnikov, Inequalities for functions of the classes $\vec{W}_p(\bbR^n)$, J. Soviet Math., 3 (1975), 549--564.idea

 

W. Rudin, Principles of mathematical analysis (third edition), International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1976.spa

 

E.M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, PrincetonUniversity Press, Princeton, N.J. 1970.component

 

鍾玉泉, 複變函數論 (第四版), 北京: 高等教育出版社, 2013 年.

 

R.E. Greene, S.G. Krantz, Function theory of one complex variable (third edition), American Mathematical Society, Providence, RI, 2006.

 

程其襄, 張奠宙, 魏國強, 胡善文, 王漱石, 實變函數與泛函分析基礎 (第三版), 北京: 高等教育出版社, 2010 年.

 

裴禮文, 數學分析中的典型問題與方法 (第 2 版), 北京: 高等教育出版社, 2006 年.

 

李大潛, 秦鐵虎, 物理學與偏微分方程 (第二版) 上冊, 北京: 高等教育出版社, 2005 年.

 

H. Bahouri, Hajer, J.Y. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 343. Springer, Heidelberg, 2011.

 

A.J. Majda, A.L. Bertozzi, Vorticity and incompressible flow, Cambridge Texts Appl. Math., Cambridge, 2002.

 

P.L. Lions, Mathematical Topics in fluid dynamics, Volume 1, incompressible models, Oxford Leture Series in Mathematics and its Applications, New York: Oxford University Press, 1996.

 

R. Temam, Navier-Stokes equations, theory and numercial analysis, AMS chelsea Publishing, 2001.

 

P. Constantin, C. Fioas, Navier-Stokes equations, Chicago Lectures in Mathematics Series, 1988.

 

Y. Meyer, Wavelets, paraproducts, and Navier-Stokes equations, Current developments in mathematics, 1996 (Cambridge, MA), 105-212, Int. Press, Boston, MA, 1997.

 

O.A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Moscow, 1970.

 

P.G. Lemari\'e-Rieusset, Recent developments in the Navier-Stokes problem, Chapman and Hall, London, 2002.

 

 

J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987.

 

H. Triebel, Theory of function spaces, Monogr. Math. 78, Birkh\"auser-Verlag, Basel, 1983.

 

P. Strzelecki, Gagliardo-Nirenberg inequalities with a BMO term, Bull. London Math. Soc., 38 (2006), 294--300.

 

D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc., 207 (1975), 391--405.

 

E. Hopf, \"Uber die Anfangwertaufgaben f\"ur die hydromischen Grundgleichungen, Math. Nachr., 4 (1951), 213--321.

 

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193--248.

 

O.A. Ladyzhenskaya, On uniqueness and smoothness of generalized solutions to the Navier-Stokes equations, Zap. Nauchn. Sem. Leningard. Otdel. Mat. Inst. Steklov. (LOMI), 5 (1967), 169--185.

 

O.A. Ladyzhenskaya, On uniqueness and smoothness of generalized solutions to the Navier-Stokes equations, Zap. Nauchn. Sem. Leningard. Otdel. Mat. Inst. Steklov. (LOMI), 5 (1967), 169--185.

 

H. Fujita, T. Kato, On the Navier-Stokes initial value problem, I, Arch. Ration. Mech. Anal., 16 (1964), 269--315.

 

T. Kato, Strong $L^p$ solutions of the Navier-Stokes equations in Morrey space, Bol. Sco Bras. Mat., 22 (1992), 127--155.

 

P.G. Lemari\'e-Rieusset, S. Gala, Multipliers between Sobolev spaces and fractional differentiation, J. Math. Anal. Appl., 322 (2006), 1030--1054.

 

P.G. Lemari\'e-Rieusset, S. Gala, Multipliers between Sobolev spaces and fractional differentiation, J. Math. Anal. Appl., 322 (2006), 1030--1054.

 

S. Machihara, T. Ozawa, Interpolation inequalities in Besov spaces, Proc. Amer. Math. Soc., 131 (2002), 1553--1556.

 

Y. Meyer, P. Gerard, F. Oru, In\'egalit\'es de Sobolev pr\'ecis\'ees, S\'eminaire \'E quations aux d\'eriv\'ees partielles (Polytechnique)

 (1996--1997), Exp. No. 4, 8 pp.

 

 

M. Bertsch, R. dal Passo, R. van der Hout, Nonuniqueness for the heat flow of harmonic maps on the disk, Arch. Ration. Mech. Anal., 161 (2002), 93--112.

 

M. Bertsch, R. dal Passo, A. Pisante, Point singularities and nonuniqueness for the heat flow for harmonic maps, Comm. Partial Differential Equations, 28 (2003), 1135--1160.

 

K.C. Chang, W.Y. Ding, R. Ye, Finite-time blow-up of the heat flow of harmonic maps from surfaces, J.Differential Geom., 36 (1992), 507--515.

 

J.M. Coron, J.M. Ghidaglia, Explosion en temps fini pour le flot des applications harmoniques, C. R. Acad. Sci. Paris Ser. I Math., 308, (1989), 339--344.

 

Y.M. Chen, M.C. Hong, N. Hungerb\"uhler, Heat flow of p-harmonic maps with values into spheres, Math. Z., 215 (1994), 25--35.

 

 

J.S. Fan, G. Nakamura, Y. Zhou, Regularity criteria for the $p$-harmonic and Ostwald-de waele flows, Bull. Korean Math. Soc., 52 (2015), 619--626.

 

J.S. Fan, T. Ozawa, Regularity criteria for harmonic hat flow and related system, Math. N., (2015), doi: 10.1002/mana.201200219.

 

J.S. Fan, T. Ozawa, Logarithmically improved regularity criteria for Navier-Stokes and related equations, Math. Methods Appl. Sci., 32 (2009), 2309--2318.

 

A. Fardoun, R. Regbaoui, Heat flow for p-harmonic maps with small initial data, Calc. Var. Partial Differential Equations, 16 (2003), 1--16.

 

N. Hungerb\"uhler, Global weak solutions of the $p$-harmonic flow into homogeneous spaces, Indiana Univ. Math. J., 45 (1996), 275--288.

 

R.G. Iagar, S. Moll, Rotationally symmetric $p-$harmonic flows from $D^2$ to $S^2$: Local well-posedness and finite time blow-up, J. Math. Anal. Appl., 416 (2014), 229--257.

 

M. Misawa, On the $p$-harmonic flow into spheres in the singular case, Nonlinear Anal., 50 (2002), 485--494.

 

T. Ogawa, Sharp Sobolev inequality of logarithmic type and the limiting regularity criterion to the harmonic heat flow, SIAM J. Math. Anal., 34 (2003), 1318--1330.

 

J. Bergh, J. L\"ofstr\"om, Interpolation spaces: an introduction, Grundlehren Math. Wiss. 223, Springer-Verlag, Berlin, New York, Heidelberg, 1976.

 

R.S. Strichartz, Bounded mean oscillation and Sobolev sapces, Indiana Univ. Math. J., 29 (1980), 539--558.

 

J.T. Beale, T. Kato, A. Majda, Remarks on the breakdown of smooth solutions for the $3$-D Euler equations, Commun. Math. Phys., 94 (1984), 61--66.

 

T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891--907.

 

D.Y. Fang, C.Y. Qian, Regularity criterion for $3$D Navier-Stokes equations in Besov spaces, Commun. Pure Appl. Anal., 13 (2014), 585--603.

 

D.Y. Fang, C.Y. Qian, The regularity criterion for the $3$D Navier-Stokes equations involving one velocity gradient component, Nonlinear Anal., 78 (2013), 86--103.

 

H. Kozono, Y. Taniuchi, Limiting case of the Sobolev inequality in BMO, with applications to the Euler equations, Commun. Math. Phys., 214 (2000), 191--200.

 

H. Beir$\tilde{\mathrm{a}}$o da Veiga, A new regularity class for the Navier-Stokes equations in $\bbR^n$, Chinese Ann. Math. Ser. B, 16

 (1995), 407--412.

 

T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891--907.

 

L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Commu. Pure Appl. Math., 35 (1982), 771--831.

 

 

L.C. Berselli, On a regularity criterion for the $3$D Navier-Stokes equations, Differential Integral Equations, 15 (2002), 1129--1137.

 

S. Bosia, V. Pata, J.C. Robinson, A weak-$L^p$ Prodi-Serrin type regularity criterion for the Navier-Stokes equations, J. Math. Fluid Mech., 16 (2014), 721--725.

 

T. Suzuki, Regularity criteria of weak solutions in terms of the pressure in Lorentz spaces to the Navier-Stokes equations, J. Math. Fluid Mech., 14 (2012), 653--660.

 

T. Suzuki, A remark on the regualrity of weak solutions to the Navier-Stokes equations in terms of the pressure in Lorentz spaces, Nonlinear Analysis: TMA, 75 (2012), 3849--3853.

 

E. De Giorgi, Sulla differenziabilit\'a e l'analiticit\'a delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat., 3 (1957), 25--43.

 

O.a. Lady\v zenskaya, V.A. Solonnikov, N.N. Ural'ceva, Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, 1968.

 

G. Stampacchia, Le probl\'eme de Dirichlet pour les \'equations elliptiques du second ordre \'a coefficients discontinus, Ann. Inst. Fourier, 15 (1965), 189--258.

 

C. Bjorland, A. Vasseur, Weak in space, log in time improvement of the Lady\'zenskaja-Prodi-Serrin criteria, J. Math. Fluid Mech., 13 (2011), 259--269.

 

R.S. Hamilton, The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), 7-136, Int. Press, Cambridge, MA, 1995.

 

L. Grafakos, Classical Fourier analysis (Second edition), Graduate Texts in Mathematics, 249, Springer, New York, 2008.

 

C.S. Cao, Sufficient conditions for the regularity to the 3D Navier-Stokes equations, Discrete Contin. Dyn. Syst., 26 (2010), 1141--1151.

 

C.S. Cao, J.L. Qin, E.S. Titi, Regularity criterion for solutions of three-dimensional turbulent channel flows, Comm. Partial Differential Equations, 33 (2008), 419--428.

 

C.S. Cao, E.S. Titi, Global regularity criterion for the $3$D Navier-Stokes equations involving one entry of the velocity gradient tensor, Arch. Ration. Mech. Anal., 202 (2011), 919--932.

 

C.S. Cao, E.S. Titi, Regularity criteria for the three-dimensional Navier-Stokes equations, Indiana Univ. Math. J., 57

 (2008), 2643--2661.

 

C.S. Cao, E.S. Titi, Global regularity criterion for the $3$D Navier-Stokes Equations involving one entry of the velocity gradient tensor, Arch. Ration. Mech. Anal., 202 (2011), 919--932.

 

B.Q. Dong, Z.M. Chen, On the regularity criteria of the 3D Navier-Stokes equations in critical spaces, Acta Math. Sci. Ser. B Engl. Ed., 31 (2011), 591--600.

 

L. Eskauriaza, G.A. Ser\"egin, V. \v Sver\'ak, $L_{3,\infty}$-solutions of Navier-Stokes equations and backward uniqueness, Russ. Math. Surv., 58

 (2003), 211--250.

 

J.S. Fan, S. Jiang, G. Nakamura, Y. Zhou, Logarithmically improved regularity criteria for the Navier-Stokes and MHD Equations, J. Math. Fluid Mech., 13 (2011), 557--571.

 

J.S. Fan, S. Jiang, G.X. Ni, On regularity criteria for the $n$-dimensional Navier-Stokes equations in terms of the pressure, J. Differential Equations, 244 (2008), 2963--2979.

 

S. Gala, Remarks on regularity criterion for weak solutions to the Navier-Stokes equations in terms of the gradient of the pressure, Appl. Anal., 92 (2013), 96--103.

 

Z.G. Guo, S. Gala, A regularity criterion for the Navier-Stokes equations in terms of one directional derivative of the velocity field, Analysis and Applications, 10 (2013), 373--380.

 

S. Gala, Remarks on regularity criterion for weak solutions to the Navier-Stokes equations in terms of the gradient of the pressure, Appl. Anal., 92 (2013), 96--103.

 

X.W. He, S. Gala, Regularity criterion for weak solutions to the Navier-Stokes equations in terms of the pressure in the class $L^2(0,T;\dot B^{-1}_{\infty,\infty}(\bbR^3))$, Nonlinear Analysis: Real World Appl., 12 (2011), 3602--3607.

 

S. Gala, A remark on the blow-up criterion of strong solutions to the Navier-Stokes equations, Appl. Math. Comput., 217 (2011), 9488--9491.

 

H. Kozono, Y. Taniuchi, Bilinear estimates in BMO and the Navier-Stokes equations, Math. Z., 235 (2000), 173--194.

 

H. Kozono, Y. Shimada, Bilinear estimates in homogeneous Triebel-Lizorkin spaces and the Navier-Stokes equations, Math. Nachr., 276 (2004), 63--74.

 

B.Q. Yuan, B. Zhang, Blow-up criterion of strong solutions to the Navier-Stokes equations in Besov spaces with negative indices, J. Differential Equations, 242 (2007), 1--10.

 

I. Kukavica, M. Ziane, One component regularity for the Navier-Stokes equations, Nonlinearity, 19 (2006), 453--469.

 

I. Kukavica, M. Ziane, Navier-Stokes equations with regularity in one direction, J. Math. Phys., 48 (2007), 065203.

 

X.J. Jia, Z.H. Jiang, An anisotrpic regularity criterion for the $3$D Navier-Stokes equations, Commu. Pure Appl. Anal., 12 (2013), 1299--1306.

 

 

H. Kozono, T. Ogawa, Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., 242 (2002), 251--278.

 

H. Kozono, Y. Taniuchi, Limiting case of the Sobolev inequality in BMO, with appliations to the Euler equations, Comm. Math. Phys., 214 (2000), 191--200.

 

Q. Liu, J.H. Zhao, S.B. Cui, A logarithmically improved regularity criterion for the Navier-Stokes equations, Monatsh. Math., 167 (2012), 503--509.

 

J. Neustupa, A. Novotn\'y, P. Penel, An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity, Topics in mathematical fluid mechanics, Quad. Mat., 10 (2002), 163--183.

 

J. Neustupa, P. Penel, Regularity of a suitable weak solution to the Navier-Stokes equations as a consequence of regularity of one velocity component, Applied nonlinear analysis, 391--402, Kluwer/Plenum, New York, 1999.

 

T. Ohyama, Interior regularity of weak solutions of the time-dependent Navier-Stokes equation, Proc. Japan Acad., 36 (1960), 273--277.

 

P. Penel, M. Pokorn\'y, Improvement of some anisotropic regularity criteria for the Navier—Stokes equations, Discrete Contin. Dyn. Syst., Series S, 6 (2013), 1401--1407.

 

P. Penel, M. Pokorn\'y, On anisotropic regularity criteria for the solutions to $3$D Navier-Stokes equations, J. Math. Fluid Mech., 13 (2011), 341--353.

 

P. Penel, M. Pokorn\'y, Some new regularity criteria for the Navier-Stokes equations containg gradient of the velocity, Appl. Math., 49 (2004), 483--493.

 

G. Prodi, Un teorema di unicit\'a per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48

 (1959), 173--182.

 

J. Serrin, The initial value problem for the Navier-Stokes equations, Nonlinear Problems, Proc. Symposium, Madison, Wisconsin, University of Wisconsin Press, Madison, Wisconsin, 1963, pp. 69--98.

 

Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 62 (1986), 186--212.

 

H. Sohr, Zur Regularit\"atstheorie der instation\"aren Gleichungen von Navier-Stokes, Math. Z., 184 (1983), 359--375.

 

H. Sohr, A regularity class for the Navier-Stokes equations in Lorentz spaces, J. Evol. Equ., 1 (2001), 441--467.

 

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 9 (1962), 187--195.

 

S. Takahashi, On interior regularity criteria for weak solutions of the Navier-Stokes equations, Manuscripta Math., 69 (1990), 237--254.

 

W.Y. Chen, A logarithmically improved regularity criterion

 for the Navier-Stokes equations in terms of the pressure, Appl. Math. Comput., 248 (2014), 1-3.

 

C. He, Regularity for solutions to the Navier-Stokes equations with one velocity component regular, Electron J. Differential Equations, 2002 (2002), 1--13.

 

M. Pokorn\'y, On the result of He concerning the smoothness of solutions to the Navier-Stokese equations, Electron J. Differential Equations, 2003 (2003), 1--8.

 

 

Z. Skalak, On the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component, Nonlinear Analy., 104 (2014), 84--89.

 

Z. Skalak, Criteria for the regularity of the solutions to the Navier-Stokes equations based on the velocity gradient, Nonlinear Anal., 118 (2015), 1--21.

 

Z. Skal\'ak, A note on the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component, J. Math. Phys., 55 (2014), 121506.

 

Z.J. Zhang, X. Yang, A note on the regularity criterion for the $3$D Navier-Stokes equations via the gradient of one velocity component, J. Math. Anal. Appl., 432 (2015), 603--611.

 

Z.J. Zhang, An almost Serrin type regularity criterion for the Navier-Stokes equations involving the gradient of one velocity component, Z. Angew. Math. Phys., 66 (2015), 1707--1715.

 

Z.J. Zhang, X. Yang, On the regularity criterion for the Navier-Stokes equations involving the diagonal entry of the velocity gradient, Nonlinear Anal., 122 (2015), 169--175.

 

S. Gala, Extension criterion on regularity for weak solutions to the $3$D MHD equations, Math. Meth. Appl. Sci., 33 (2010),1496--1503.

 

Z.J. Zhang, Regularity criteria for the 3D MHD equations involving one current density and the gradient of one velocity component, Nonlinear Analysis, 115 (2015), 41--49.

 

X.J. Jia, Y. Zhou, Ladyzhenskaya-Prodi-Serrin type regularity criteria for the $3$D incompressible MHD equations in terms of $3\times 3$ mixture matrices, Nonlinearity, 28 (2015), 3289--3307.

 

S. Benbernou, S. Gala, M.A. Ragusa, On the regularity criteria for the 3D magnetohydrodynamic equations via two components in terms of BMO space, Math. Methods Appl. Sci., 37 (2014), 2320--2325.

 

Z.J. Zhang, X. Yang, On the regularity criterion for the Navier-Stokes equations involving the diagonal entry of the velocity gradient, Nonlinear Analysis, 122 (2015), 169--175.

 

 Z.J. Zhang, An almost Serrin type regularity criterion for the Navier-Stokes equations involving the gradient of one velocity component, Z. Angew. Math. Phys., (2015), doi:10.1007/s00033-015-0500-7.

 

X.J. Xu, Z. Ye, Z.J. Zhang, Remark on an improved regularity criterion for the $3$D MHD equations, Appl. Math. Lett., 42 (2015), 41--46.

 

Y. Wang, BMO and the regularity criterion for weak solutions to the magnetohydrodynamic equations, J. Math. Anal. Appl., 328 (2007), 1082--1086.

 

C. He, Y. Wang, On the regularity criteria for weak solutions to the magnetohydrodynamic equations, J. Differential Equations, 238 (2007), 1--17.

 

C. He, Y. Wang, Remark on the regularity for weak solutions to the magnetohydrodynamic equations, Math. Methods Appl. Sci., 31 (2008), 1667--1684.

 

C. He, Y. Wang, Limiting case for the regularity criterion of the Navier-Stokes equations and the magnetohydrodynamic equations, Sci. China Math., 53 (2010), 1767--1774.

 

M.E. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes equations and other evolution equations, Comm. Partial Differential Equations, 17 (1992), 1407--1456.

 

D. Chae, H.J. Choe, Regularity of solutions to the Navier-Stokes equations, 1999 (1999), 1--7.

 

H. Kozono, N. Yatsu, Extension criterion via two-components of vorticity on strong solution to the $3$D Navier-Stokes equations, Math. Z., 246 (2003), 55--68.

 

Z.F. Zhang, Q.L. Chen, Regularity criterion via two components of vorticity on weak solutions to the Navier-Stokes equations in $\mathbb{R}^3$, J. Differential Equations, 216 (2005), 470--481.

 

Z.J. Zhang, A Serrin-type reuglarity criterion for the Navier-Stokes equations via one velocity component, Commun. Pure Appl. Anal., 12 (2013), 117--124.

 

 Z.J. Zhang, A remark on the regularity criterion for the $3$D Navier-Stokes equations involving the gradient of one velocity component, J. Math. Anal. Appl., 414 (2014), 472--479.

 

Z.J. Zhang, F. Alzahrani, T. Hayat, Y. Zhou, Two new regularity criteria for the Navier-Stokes equations via two entries of the velocity Hessian tensor, Appl. Math. Lett., 37 (2014), 124--130.

 

Z.J. Zhang, P. Li, D.X. Zhong, Navier-Stokes equations with regularity in two entries of the velocity gradient tensor, Appl. Math. Comput., 228 (2014), 546--551.

 

Z.J. Zhang, Z.A. Yao, P. Li, C.C. Guo, M. Lu, Two new regularity criteria for the $3$D Navier-Stokes equations via two entries of the velocity gradient, Acta Appl. Math., 123 (2013), 43--52.

 

Z.J. Zhang, D.X. Zhong, L. Hu, A new regularity criterion for the $3$D Navier-Stokes equations via two entries of the velocity gradient tensor, Acta Appl. Math., 129 (2014), 175--181.

 

 

Z.J. Zhang, Z.A. Yao, M. Lu, L.D. Ni, Some Serrin-type regularity criteria for weak solutions to the Navier-Stokese equations, J. Math. Phys., 52 (2011), 053103.

 

X.X. Zheng, A regularity criterion for the tridimensional Navier-Stokes equations in terms of one veloicty component, J. Differential Equations, 256 (2014), 283--309.

 

Y. Zhou, A new regularity criterion for the Navier-Stokes equations in terms of the gradient of one velocity component, Methods Appl. Anal., 9 (2002), 563--578.

 

Y. Zhou, A new regularity criterion for weak solutions to the Navier-Stokes equations, J. Math. Pures Appl., 84 (2005), 1496--1514.

 

Y. Zhou, A new regularity criterion for the Navier-Stokes equations in terms of the gradient of one velocity component, Methods Appl. Anal., 9 (2002), 563--578.

 

Y. Zhou, On regularity criteria in terms of pressure for the Navier-Stokes equations in $\mathbb{R}^3$, Proc. Amer. Math. Soc., 134 (2006), 149--156.

 

Y. Zhou, M. Pokorn\'y, On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component, J. Math. Phys., 50 (2009), 123514.

 

 

Y. Zhou, M. Pokorn\'y, On the regularity of the solutions of the Navier-Stokes equations via one velocity component, Nonlinearity, 23 (2010), 1097--1107.

 

Y. Zhou, Regularity criteria for the generalized viscous MHD equations, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 24 (2007), 491--505.

 

Y.Z. Wang, H.J. Zhao, Y.X. Wang, A logarithmally improved blow-up criterion of smooth solutions for the three-dimensional MHD equations, Internat. J. Math., 23 (2012), 1250027, 12 pp.

 

S. Benbernou, S. Gala, M.A. Ragusa, On the regularity criteria for the $3$D magnetohydrodynamic equations via two components in terms of BMO spaces, Math. Meth. Appl. Sci., 37 (2014), 2320--2325.

 

C.S. Cao, J.H. Wu, Two regularity criteria for the $3$D MHD equations, J. Differential Equations, 248 (2010), 2263--2274.

 

Q.L. Chen, C.X. Miao, Z.F. Zhang, On the regularity criterion of weak solutions for the $3$D viscous magneto-hydrodynamics equations, Comm. Math. Phys., 284 (2008), 919--930.

 

Q.L. Chen, C.X. Miao, Z.F. Zhang, The Beale-Kato-Majda criterion for the $3$D magneto-hydrodynamics equations, Comm. Math. Phys., 275 (2007), 861--872.

 

 

H.L. Duan, On regularity criteria in terms of pressure for the $3$D viscous MHD equations, Appl. Anal., 91 (2012), 947--952.

 

J.S. Fan, S. Jiang, G. Nakamura, Y. Zhou, Logarithmically improved regularity criteria for the Navier-Stokes and MHD Equations, J. Math. Fluid Mech., 13 (2011), 557--571.

 

S. Gala, A new regularity criterion for the $3$D MHD equations in $\bbR^3$, Commu. Pure Appl. Anal., 11 (2012), 937--980.

 

C. He, Z.P. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equations, 213 (2005), 235--254.

 

X.J. Jia, A new scaling invariant regularity criterion for the 3D MHD equations in terms of horizontal gradient of horizontal components, Appl. Math. Lett., 50 (2015), 1--4.

 

X.J. Jia, Y. Zhou, A new regularity criterion for the $3$D incompressible MHD equations in terms of one component of the gradient of pressure, J. Math. Anal. Appl., 396 (2012), 345--350.

 

X.J. Jia, Y. Zhou, Regularity criteria for the $3$D MHD equations involving partial components, Nonlinear Analysis: Real World Appl., 13 (2012), 410--418.

 

X.J. Jia, Y. Zhou, Remarks on regularity criteria for the Navier-Stokes equations via one velocity component, Nonlinear Anal. Real World Appl., 15 (2014), 239--245.

 

X.J. Jia, Y. Zhou, Regularity criteria for the $3$D MHD equations via partial derivatives, Kinet. Relat. Models, 5 (2012), 505--516.

 

X.J. Jia, Y. Zhou, Regularity criteria for the $3$D MHD equations via

 partial derivatives II, Kinet. Relat. Models, 7 (2014), 291--304.

 

X.J. Jia, Y. Zhou, Remarks on regularity criteria for the Navier-Stokes equations via one velocity component, Nonlinear Anal.: Real World Appl., 15 (2014), 239--245.

 

E. Ji, J. Lee, Some regularity criteria for the $3$D incompressible magnetohydrodynamics, J. Math. Anal. Appl., 369 (2010), 317--322.

 

L.D. Ni, Z.G. Guo, Y. Zhou, Some new regularity criteria for the $3$D MHD equations, J. Math. Anal. Appl., 396 (2012), 108--118.

 

 

Y.Z. Wang, J. Zhao, Y.X. Wang, Regularity criteria for weak solutions to the $3$-d magnetohydrodynamic equations, ScienceAsia, 38 (2012), 108--112.

 

H.X. Lin, L.L. Du, Regularity criteria for incompressible magnetohydrodynamics equations in three dimensions, Nonlinearity, 26 (2013), 219--239.

 

K. Yamazaki, Component reduction for regularity criteria of the three-dimensional magnetohydrodynamics system, Electron. J. Differential Equations, 2014 (2014), 1--18.

 

K. Yamazaki, Regularity criteria of MHD system involving one velocity and one current density component, J. Math. Fluid Mech., 16 (2014), 551--570.

 

Z.J. Zhang, Remarks on the global regularity criteria for the $3$D MHD equations via two components, Z. Angew. Math. Phys., 66 (2015), 977--987.

 

K. Yamazaki, Remarks on the regularity criteria of three-dimensional magnetohydrodynamics system in terms of two velocity field components, J. Math. Phys., 55 (2014), 031505.

 

K. Yamazaki, Remarks on the regularity criteria of generalized MHD and Navier-Stokes systems, J. Math. Phys., 54 (2013), 011502.

 

J.H. Zhao, Q. Liu, Logarithmically improved regularity criterion for the $3$D generalized magneto-hydrodynamic equations, Acta Math. Sci. Ser. B Engl. Ed., 34 (2014), 568--574.

 

B.Q. Yuan, Regularity criterion of weak solutions to the MHD system based on vorticity and electric current in negative index Besov spaces, Adv. Math. (China), 37, (2008), 451--458.

 

Z.J. Zhang, Remarks on the regularity criteria for generalized MHD equations, J. Math. Anal. Appl., 375 (2011), 799--802.

 

Z.J. Zhang, X.Q. Ouyang, D.X. Zhong, S.L. Qiu, Remarks on the regularity criteria for the $3$D MHD equations in the multiplier spaces, Boundary Value Problems, 2013 (2013), doi:10.1186/1687-2770-2013-270.

 

Z.J. Zhang, T. Tang, F.M. Zhang, A remark on the regularity criterion for the MHD equations via two components in Morrey-Campanato spaces, Journal of Difference Equations, 2014 (2014), 364269.

 

Z.J. Zhang, Regularity criteria for the $3$D MHD equations involving one current density and the gradient of one velocity component, Nonlinear Analysis: TMA, 115 (2015), 41--49.

 

Z.J. Zhang, P. Li, G.H. Yu, Regularity criteria for the $3$D MHD equations via one directional derivative of the pressure, J. Math. Anal. Appl., 401 (2013), 66--71.

 

 

Y. Zhou, Remaks on regularities for the $3$D MHD equations, Discrete Contin. Dyn. Syst., 12 (2005), 881--886.

 

Y. Zhou, Regularity criteria for the $3$D MHD equations in terms of the pressure, Int. J. Non-Linear Mech., 41 (2006), 1174--1180.

 

Y. Zhou, J.S. Fan, Logarithmically improved regularity criteria for the $3$D viscous MHD equations, Forum Math., 24 (2012), 691--708.

 

Y. Zhou, S. Gala, A new regularity criterion for weak solutions to the viscous MHD equations in terms of the vorticity field, Nonlinear Anal.: Theory Method Appl., 72 (2011), 3643--3648.

 

Y. Zhou, S. Gala, Regularity criterion for the solutions to the $3$D MHD equations in the multiplier space, Z. Angew. Math. Phys., 61 (2011), 193--199.

 

G. Duvaut, J.L. Lions, In\'equations en thermo\'elasticit\'e et magn\'etohydrodynamique, Arch. Ration. Mech. Anal., 46 (1972), 241--279.

 

M. Sermange, R. Temam, Some mathematical questions realted to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635--664.

 

C.S. Cao, D. Regmi, J.H. Wu, The $2$D MHD equations with horizontal dissipation and horizontal magnetic diffusion, J. Differential Equations, 254 (2013), 2661--2681.

 

C.S. Cao, J.H. Wu, Global regularity for the $2$D MHD equations with mixed partial dissipation and magnetic diffusion, Adv. Math., 226 (2011), 1803--1822.

 

B.Q. Dong, Z.F. Zhang, Global regularity of the 2D micropolar fluid flows with zero angular viscosity, J. Differential Equations, 249 (2010), 200--213.

 

F. Wang, K.Y. Wang, Global existence of $3$D MHD equations with mixed partial dissipation and magnetic diffusion, Nonlinear Analysis: Real World Appl., 14 (2013), 526--535.

 

S. Benbernou, Samia, M. Terbeche, M.A. Ragusa, Z.J. Zhang, A note on the regularity criterion for $3$D MHD equations in

 $\dot B^{-1}_{\infty,\infty}$ space, Appl. Math. Comput., 238 (2014), 245--249.

 

S. Gala, Z.G. Guo, M.A. Ragusa, A remark on the regularity criterion of Boussinesq equations with zero heat conductivity, Appl. Math. Lett., 27 (2014), 70--73.

 

H. Qiu, Y. Du, Z.A. Yao, Blow-up criteria for $3$D Boussinesq equations in the multiplier spaces, Commun. Nonlinear Numer. Simulat., 16 (2011), 1820--1824.

 

Z.J. Zhang, A remark on the regularity criterion for the $3$D Boussinesq equations via the pressure gradient, Abstr. Appl. Anal., 2014 (2014), 510924.

 

D. Chae, Global regularity for the $2$D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497--513.

 

T. Hou, C.M. Li, Global well-posedness of the viscous Boussinesq equaqtions, Discrete Contin. Dyst. Syst., 12 (2005), 1--12.

 

 

 

J.S. Fan, T. Ozawa, Regularity criteria for the $3$D density-dependent Boussinesq equations, Nonlinearity, 22 (2009), 553--568.

 

J.S. Fan, F.C. Li, Uniform local well-posedness and regularity criterion for the density-dependent incompressible flow of liquid crystals, Commun. Math. Sci., 12 (2014), 1185--1197.

 

 

 

 

H.J. Choe, H. Kim, Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Comm. Partial Differential Equations, 28 (2003), 1183--1201.

 

H. Kim, A blow-up criterion for the nonhomogeneous incompressible Navier-Stokese equations, SIAM J. Math. Anal., 37 (2006), 1417--1434.

 

 

B.Q. Dong, Z.M. Chen, Regularity criteria of weak solutions to the three-dimensional micropolar flows, J. Math. Phys., 50 (2009), 103525.

 

B.Q. Yuan, Regularity of weak solutions to the magneto-micropolar fluid equations, Acta Math. Sci., 30 (2010), 1469--1480.

 

S. Gala, Regularity criteria for the $3$D magneto-micropolar fluid equations in the Morrey-Campanato space, Nonlinear Differ. Equ. Appl., 17 (2010), 181--194.

 

S. Gala, On regularity criteria for the three-dimensional micropolar fluid equaitions in the critical Morrey-Campanato space, Nonlinear Analysis: Real World Appl., 12 (2011), 2142--2150.

 

Z.J. Zhang, Z.A. Yao, X.F. Wang, A regularity criterion for the 3D magneto-micropolar fluid equations in Triebel-Lizorkin spaces, Nonlinear Analysis, 74 (2011), 2220--2225.

 

C.C. Guo, Z.J. Zhang, J.L. Wang, Regularity criteria for the $3$D magneto-micropolar fluid equations in Besov spaces with negative indices, Appl. Math. Comput., 218 (2012), 10755--10758.

 

F.J. Guo, Remarks on the pressure regularity criterion of the micropolar fluid equations in multiplier spaces, Abstract Appl. Anal., 2012 (2012), 618084.

 

S. Gala, Y. Jia, Two regularity criteria via the Logarithm of the weak solutions to the micropolar fluid equations, J. Part. Diff. Eq., 25 (2012), 32--40.

 

B.Q. Yuan, On the blow-up criterion of smooth solutions to the MHD system in BMO space, Acta Math. Appl. Sin. Engl. Ser., 22 (2006), 413--418.

 

 

H. Zhu, B.Q. Yuan, Regularity criteria for the $3$D magneto-micropolar equations in terms of the pressure, J. Yunnan Univ., 34 (2012), 503--509.

 

Y.Z. Wang, H.C. Yuan, A logarithmically improved blow-up criterion for smooth solutions to the 3D micropolar fliud equations, Nonlinear Analysis: Real World Appl., 13 (2012), 1904--1912.

 

 

 

A.C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1996), 1--18.

 

G.P. Galdi, S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations, Internat. J. Eng. Sci., 15 (1997), 105--108.

 

G. \L ukaszewicz, Micropolar fluids, Theory and Applications, Model. Simul. Sci. Eng. Technol., Birkh\"auser, Boston, 1999.

 

N. Yamaguchi, Existence of global strong solutions to the micropolar fluid system in a bounded domain, Math. Meth. Appl. Sci., 28 (2005), 1507--1526.

 

B.Q. Dong, Z.M. Chen, Asymptotic profiles of solutions to the $2$D viscous incompressible micropolar fluid flows, Discrete Contin. Dyn. Syst., 23 (2009), 765--784.

 

 

 

R. Danchin, The inviscid limit for density-dependent incompressible fluids, Ann. Fac. Sci. Toulouse Math., 15 (2006), 637--688.

 

R. Danchin, Density-dependent incompressible viscous fluids in critical spaces, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 1311--1334.

 

 

S. Chandrasekhar, Liquid cyrstals (2nd edition), Cambrige University Press, 1992.

 

F.H. Lin, C.Y. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals, Chinese Ann. Math. Seres B, 31 (2010), 921--938.

 

M.C. Hong, Global existsence of solutions of the simplified Ericksen-Leslie sytsem in $\bbR^2$, Cal. Var. Partial Differential Equations, 41 (2011), 45--69.

 

R. Danchin, F. Fanelli, The well-posedness issue for the density-dependent Euler equations in endpoint Besov spaces, J. Math. Pures Appl., 96 (2011), 253--278.

 

R.Danchin, P.B. Mucha, A Lagrangian approach for the incompressible Navier-Stokes equations with variable density, Comm. Pure Appl. Math., 65 (2012), 1458--1480.

 

J.S. Fan, G. Nakamura, Local solvability of an inverse problem to the density-dependent Navier-Stokes equations, Appl. Anal., 87 (2008), 1255--1265.

 

F.H. Lin, J.Y. Lin, C.Y. Wang, Liquid crystal flows in two dimensions, Arch. Ration. Mech. Anal., 197 (2010), 297--336.

 

J.L. Ericksen, Hydrostatic theory of liquid crystal, Arch. Ration. Mech. Anal., 9 (1962), 371--378.

 

P.G. de gennes, The physics of liquid crystals, Oxford: OxfordUniversity Press, (1974).

 

T. Huang, C.Y. Wang, Blow up criterion for nematic liquid crystal flows, Comm. Partial Differential Equations, 37 (2012), 875--884.

 

F.M. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265--283.

 

X.L. Li, D.H. Wang, Global solution to the incompressible flow of liquid crystals, J. Diff. Eqs., 252 (2012), 745--767.

 

F.H. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789--814.

 

 

S. Gala, Q. Liu, M.A. Ragusa, A new regularity criterion for the nematic liquid crystal flows, Appl. Anal., 91 (2012), 1741--1747.

 

S. Gala, Q. Liu, M.A. Ragusa, Logarithmically improved regularity criterion for the nematic liquid crystal flows in $\dot B^{-1}_{\infty,\infty}$ space, Comput. Math. Appl., 65 (2013), 1738--1745.

 

F.H. Lin, C. Liu, Partial regularity of the dynamic system modeling the flow of liquid crystals, Discrete Contin. Dynam. Systems, 2 (1996), 1--22.

 

F.H. Lin, C. Liu, Existence of solutions for the Ericksen-Leslie system, Arch. Ration. Mech. Anal., 154 (2000), 135--156.

 

J.S. Fan, H.J. Gao, B.L. Guo, Regularity criteria for the Navier-Stokes-Landau-Lifshitz system, J. Math. Anal. Appl., 363 (2010), 29--37.

 

F.H. Lin, C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., XLVIII (1995), 501--537.

 

F.H. Lin, C. Liu, Static and dynamic theories of liquid crystals, J. Part. Diff. Eqs., 14 (2001), 289--330.

 

F.H. Lin, C. Liu, Partial regularity of the dynamic system modeling the flow of liquid crystals, Discrete Contin. Dyn. Syst., 2 (1996), 1--22.

 

Q. Lui, S.B. Cui, S. Gala, Logarithmically improved criteria for the $3$D nematic liquid crystal flows in the multiplier spaces, Acta Appl. Math., 117 (2012), 107--114.

 

Z.J. Zhang, X.F. Wang, Z.A. Yao, Remarks on regularity criteria for the weak solutions of liquid crystals, J. Evol. Equ., 12, 801--812.

 

Q. Chen, Z. Tan, G.C. Wu, LPS's criterion for the incompressible nematic liquid crystal flows, Acta Math. Sci., 34 (2014), 1072--1080.

 

 

D. Chae, P. Degond, J.G. Liu, Well-posedness for Hall-magnetohydrodynamics, Ann. I. H. Poincar\'e-AN, 31 (2014),555--565.

 

J.S. Fan, T. Ozawa, Regularity criteria for the density-dependent Hall-magnetohydrodynamics, Appl. Math. Lett., 36 (2014), 14--18.

 

J.S. Fan, F.C. Li,G. Nakamura, Regularity criteria for the incompressible Hall-magnetohydrodynamic equations, Nonlinear Anal., 109 (2014), 173--179.

 

J.S. Fan, T. Ozawa, Regularity criteria for Hall-magnetohydrodynamics and the space-time monopole equation in Lorenz gauge, Harmonic analysis and partial differential equations, 81-89, Contemp. Math., 612, Amer. Math. Soc., Providence, RI, 2014.

 

Y.E. Litvinenko, C. McMahon, Finite-time singularity formation at a magnetic neutral line in Hall magnetohydrodynamics, Appl. Math. Lett., 45 (2015), 76--80.

 

J.S. Fan, A. Alsaedi, T. Hayat, G. Nakamura, Y. Zhou, On strong solutions to the compressible Hall-magnetohydrodynamic system, Nonlinear Anal. Real World Appl., 22 (2015), 423--434.

 

 

D. Chae, Remarks on the Liouville type results for the compressible Navier-Stokes equations in $\bbR^N$, Nonlinearity, 25 (2012), 1345--1349.

 

D. Chae, P. Degond, J.G. Liu, Well-posedness for Hall-magnetohydrodynamics, Ann. I. H. Poincar\'e-AN, 31 (2014),555--565.

 

D. Li, X.W. Yu, On some Liouville type theorems for the compressible Navier-Stokes equations, Discrete Contin. Dyn. Syst., 34 (2014), 4719--4733.

 

 

 

 

 

M. Acheritogaray, P. Degond, A. Frouvelle, J.G. Liu, Kinetic formulation and global existence for the Hall-Magento-hydrodynmics systems, Kinet. Relat. Models, 4 (2011), 901--918.

 

S.A. Balbus, C. Terquem, Linear Analysis of the Hall effect in protosteller disks, Astrophys. J., 552 (2001), 235--247.

 

L.M.B.C. Campos, On hydromagnetic waves in atmospheres with application to the sun, Theor. Comput. Fluid Dyn., 10 (1998), 37--70.

 

T.G. Forbes, Magnetic reconnection in solar flares, Geophys. Astrophys. Fluid Dyn., 62 (1991), 15--36.

 

H. Homann, R. Grauer, Bifurcation analysis of magnetic reconnection in Hall-MHD sytsems, Phys. D, 208 (2005), 59--72.

 

M.J. Lighthill, Studies on magneto-hydrodynamic waves and other anisotropic wave motions, Philos. Trans. R. Soc. Lond. Ser. A, 252 (1960), 397--430.

 

P.D. Minini, D.O. G\'omez, S.M. Mahajan, Dynamo action in magnetohydrodynamics and Hall magnetohydrodynamics, Astrophys., 587 (2003), 472--481.

 

D.A. Shalybkov, V.A. Urpin, The Hall effect and the decay of magnetic fields, Astron. Astrophys., 321 (1997), 685--690.

 

M. Wardle, Star formation and the Hall effect, Astrophys. Space Sci., 292 (2004), 317--323.

 

D. Chae, P. Degond, J.G. Liu, Well-posedness for Hall-magnetohydrodynamics, Ann. I. H. Poincar\'e-AN, 31 (2014),555--565.

 

D. Chae, J. Lee, On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics, J. Differential Equations, 256 (2014), 3835--3858.

 

 

D. Chae, M. Schonbek, On the temporal decay for the Hall-magnetohydrodynamic equations, J. Differential Equations, 255 (2013), 3971--3982.

 

M.E. Schonbek, M. Wiegner, On the decay of higher-order norms of the solutions of Navier-Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 677--685.

 

M.E. Schonbek, T.P. Schonbek, E. S\"li, Large-time behaviour of solutions to the magnetohydrodynamics equations, Math. Ann., 304 (1996), 717--756.

 

M.E. Schonbek, T.P. Schonbek, E. S\"li, Decay results for solutions to the magneto-hydrodynamics equations. Mathematical analysis of phenomena in fluid and plasma dynamics (Japanese) (Kyoto, 1994). Sūrikaisekikenkyūsho Kōkyūroku No. 914 (1995), 98--102.

 

M.E. Schonbek, The Fourier splitting method. Advances in geometric analysis and continuum mechanics (Stanford, CA, 1993), 269-274, Int. Press, Cambridge, MA, 1995.

 

M.E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations in $H^m$ spaces, Comm. Partial Differential Equations, 20 (1995), 103--117.

 

M.E. Schonbek, Estimates for the pressure and the Fourier transform for solutions and derivatives to the Navier-Stokes equations, Indiana Univ. Math. J., 43 (1994), 535--549.

 

M.E. Schonbek, Some results on the asymptotic behaviour of solutions to the Navier-Stokes equations.

 The Navier-Stokes equations II—theory and numerical methods (Oberwolfach, 1991), 146-160, Lecture Notes in Math., 1530, Springer, Berlin, 1992.

 

M.E. Schonbek, Asymptotic behavior of solutions to the three-dimensional Navier-Stokes equations, Indiana Univ. Math. J., 41 (1992), 809--823.

 

M.E. Schonbek, Lower bounds of rates of decay for solutions to the Navier-Stokes equations, J. Amer. Math. Soc., 4 (1991), 423--449.

 

M.E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations, Comm. Partial Differential Equations, 11 (1986), 733--763.

 

M.E. Schonbek, $L^2$ decay for weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 88 (1985), 209--222.

 

Y. Zhou, J.S. Fan, A regularity criterion for the density-dependent magnetohydrodynamic equations, Math. Methods Appl. Sci., 33 (2010), 1350--1355.

 

J.S. Fan, F.C. Li, G. Nakamura, Z. Tan, Regularity criteria for the three-dimensional magnetohydrodynamic equations, J. Differential Equations, 256 (2014), 2858--2875.

 

Q. Chen, Z. Tan, Y.J. Wang, Strong solutions to the incompressible magnetohydrodynamic equations, Math. Methods Appl. Sci., 34 (2011), 94--107.

 

W. Borcher, T. Miyakawa, $L^2$ decay for the Navier-Stokes equations in unbounded domains, with applications to exterior stationary flows, Arch. Ration. Mech. Anal., 118 (1992), 272--295.

 

Y. Cho, H. Kim, Unique solvability for the density-dependent Navier-Stokes equations, Nonlinear Anal., 59 (2004), 465--489.

 

 

H. Darcy, Les Fontaines Publique de la Ville de Dijon, Dalmont, Paris, 1856.

 

S. Rahman, Regularity criterion for $3$D MHD fluid passing through the porous medium in terms of gradient pressure, J. Comput. Appl. Math., 270 (2014), 88--99.

 

 

 

X.J. Cai, Q.S. Jiu, Weak and strong solutions for the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 343 (2008), 799--809.

 

Z.J. Zhang, X.L. Wu, M. Lu, On the uniqueness of strong solution to the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 377 (2011), 414--419.

 

Y. Zhou, Regularity and uniqueness for the 3D incompressible Navier-Stokes equations with damping, Appl. Math. Lett., 25 (2012), 1822--1825.

 

Z. Ye, Regularity and decay of $3$D incompressible MHD equations with nonlinear damping terms, Colloq. Math., 139 (2015), 185--203.

 

 

 

Z. Ye, X.J. Xu, Global regularity of 3D generalized incompressible magnetohydrodynamic-$\alpha$ model, Appl. Math. Lett., 35 (2014), 1--6.

 

Z. Ye, X.J. Xu, Global regularity of the two-dimensional incompressible generalized magnetohydrodynamics system, Nonlinear Anal., 100 (2014), 86--96.

 

 

X.J. Xu, Z. Ye, The lifespan of solutions to the inviscid 3D Boussinesq system, Appl. Math. Lett., 26 (2013), 854--859.

 

 

Z.P. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equations with compact density, 51 (1998), 229--240.

 

Z.P. Xin, Y. Wei, On blowup of classical solutions to the comrpessible Navier-Stokes equations, 321 (2013), 529--541.

 

Z.J. Zhang, Z.A. Yao, X.F. Wang, A regularity criterion for the $3$D magneto-micropolar

 fluid equations in Triebel-Lizorkin spaces, Nonlinear Anal., 74 (2011), 2220--2225.

 

B.Q. Dong, W.L. Zhang, On the regularity criterion for three-dimensional

 micropolar fluid flows in Besov spaces, Nonlinear Anal., 73 (2010), 2334--2341.

 

B.Q. Dong, Z.M. Chen, Regularity criteria of weak solutions to

 the three-dimensional micropolar flows, J. Math. Phys., 50 (2009), 103525, 13 pp.

 

T. Suzuki, H. Wadade, Optimal embeddings on critical Sobolev-Lorentz spaces into generalized Morrey spaces, Adv. Math. Sci. Appl., 22 (2012), 225--238.

 

T. Suzuki, Regularity criteria of weak solutions in terms of the pressure in Lorentz spaces to the Navier-Stokes equations, J. Math. Fluid Mech., 14 (2012), 653--660.

 

T. Suzuki, A remark on the regularity of weak solutions to the Navier-Stokes equations in terms of the pressure in Lorentz spaces, Nonlinear Anal., 75 (2012), 3849--3853.

 

T. Suzuki, Regularity criteria in weak spaces in terms of the pressure to the MHD equations, Discrete Contin. Dyn. Syst., Dynamical systems, differential equations and applications. 8th AIMS Conference. Suppl. Vol. II, (2011), 1335--1343.

 

T. Suzuki, On partial regularity of suitable weak solutions to the Navier-Stokes equations in unbounded domains, Manuscripta Math.

 125 (2008), 471--493.

 

T. Suzuki, Interior regularity criterion via pressure on weak solutions to the Navier-Stokes equations, Math. Nachr., 280 (2007), 221--230.

 

T. Suzuki, Interior regularity criterion via pressure on weak solutions to the Navier-Stokes equations, Hyperbolic problems: theory, numerics and applications. II, 337-344, Yokohama Publ., Yokohama, 2006.

 

H. Beir${\mathrm{\tilde a}}$o da Veiga, Concerning the regularity of the solutions to the Navier-Stokes equations via the truncation method. I., Differential Integral Equations, 10 (1997), 1149--1156.

 

H. Beir${\mathrm{\tilde a}}$o da Veiga, Concerning the regularity of the solutions to the Navier-Stokes equations via the truncation method. II, \'Equations aux d\'eriv\'ees partielles et applications, 127--138, Gauthier-Villars, \'Ed. Sci. M\'ed. Elsevier, Paris, 1998.

 

 

P.L. Lions, Mathematical topics in fluid mechanics (volume 2), Compressible models, OxfordUniversity Press, New York, 1998.

 

E. Feireisl, A. Novotn\'y, H. Petzeltov\'a

 On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358--392.

 

S. Jiang, P. Zhang, On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations, Comm. Math. Phys., 215 (2001), 559--581.

 

S. Jiang, P. Zhang, Jiang, Song; Zhang, Ping Axisymmetric solutions of the 3D Navier-Stokes equations for compressible isentropic fluids, J. Math. Pures Appl., 82 (2003), 949--973.

 

 

H.J. Choe, H. Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids, J. Differential Equations, 190 (2003), 504--523.

 

X.D. Huang, J. Li, Serrin-type blowup criterion for viscous, compressible, and heat conducting Navier-Stokes and magnetohydrodynamic flows, Comm. Math. Phys., 324 (2013), 147--171.

 

X.D. Huang, Y. Wang, A Serrin criterion for compressible nematic liquid crystal flows, Math. Methods Appl. Sci., 36 (2013), 1363--1375.

 

X.D. Huang, Z.P. Xin, A blow-up criterion for classical solutions to the compressible Navier-Stokes equations, Sci. China Math., 53 (2010), 671--686.

 

X.D. Huang, Z.P. Xin, A blow-up criterion for the compressible Navier-Stokes equations, http://arxiv/abs/0902.2606v1 [maths-ph], 2009.

 

J.S. Fan, S. Jiang, Blow-up criteria for the Navier-Stokes equations of compressible fluids, J. Hyperbolic Differ. Equ., 5 (2008), 167--185.

 

 X.D. Huang, J. Li, Z.P. Xin, Serrin-type criterion for the three-dimensional viscous compressible flows, SIAM J. Math. Anal., 43 (2011), 1872--1886.

 

 X.D. Huang, J. Li, Z.P. Xin, Blowup criterion for viscous baratropic flows with vacuum states, Comm. Math. Phys., 301 (2011), 23--35.

 

Y.Z. Sun, C. Wang, Z.F. Zhang, A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations, J. Math. Pures Appl., 95 (2011), 36--47.

 

Y.Z. Sun, Z.F. Zhang, A blow-up criterion of strong solutions to the 2D compressible Navier-Stokes equations, Sci. China Math., 54 (2011), 105--116.

 

Y. Wang, One new blowup criterion for the 2D full compressible Navier-Stokes system, Nonlinear Anal. Real World Appl., 16 (2014), 214--226.

 

H.Y. Wen, C.J. Zhu, Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum, Adv. Math., 248 (2013), 534--572.

 

L.L. Du, Y.F. Wang, Blowup criterion for 3-dimensional compressible Navier-Stokes equations involving velocity divergence, Commun. Math. Sci., 12 (2014), 1427--1435.

 

 

B.L. Guo, Y.Q. Han, Global regular solutions for Landau-Lifshitz equation, Front. Math. China, 1 (2006), 538--568.

 

J.S. Fan, T. Ozawa, A regularity criterion for the Schr\"odinger Map, Current Trends in Analysis and Its Applications Trends in Mathematics, (2015), 217--223.

 

K. Ondrej, M. Pokorn\'y, A regularity criterion for the angular velocity component in axisymmetric Navier-Stokes equations, Electron J. Differential Equations, 2007 (2007): 1--10.

 

Y.K. Cho, Multiplicative Sobolev inequalities of the Ladyzhenskaya type, Math. Inequal. Appl., 14 (2011), 335--341.

 

A. Cohen, R. Devore, P. Pentrushev, H. Xu, Nonlinear approximation and the space BV($\bbR^2$), Amer. J. Math., 121 (1999), 587--628.

 

A. Cohen, W. Dahmen, I. Daubechies, R. DeVore, Harmonic analysis of the space BV, Rev. Mat. Iberoamericana, 19 (2003), 235--263.

 

A. Cohen, Y. Meyer, F. Oru, Improve Sobolev embedding theorem. S\'eminar sur les \'Equations aux D\'eriv\'ees Partielles, 1997--1998, Exp. No. XVI, 16 pp., \'Ecole Polytech., Palaiseau, 1998.

 

M. Ledoux, On improved Sobolev embedding theorems, Math. Res. Lett., 10 (2003), 659--669.

 

Y. Meyer, T. Rivi\'ere, A partial regularity result for a class of stationary Yang-Mills fields in high dimension, Rev. Mat.Iberoamericana, 19 (2003): 195--219.

 

J. Martin, M. Milman, Sharp Gagliardo-Nirenberg inequalities via symmetrization, Math. Res. Lett., 14 (2006), 49--62.

 

R. Tristan, P. Strzelecki, A sharp nonlinear Gagliardo-Nirenberg-type estimate and applications to the regularity of elliptic systems, Comm. Partial Differential Equations, 30 (2005): 589--604.

 

 

D. Chae, J. Lee, On the regularity of the axisymmetric solutions of the Navier-Stokes equations, Math. Z., 239 (2002), 645--671.

 

H. Chen, D.Y. Fang, T. Zhang, Regularity of $3$D axisymmetric Navier-Stokes equations, arXiv: 1505.00905 (2015).

 

Q.L. Chen, Z.F. Zhang, Regularity criterion of axisymmetric weak solutions to the 3D Navier–Stokes equations, J. Math. Anal. Appl., 331 (2007), 1384--1395.

 

S. Gala, On the regularity criterion of axisymmetric weak solutions to the 3D Navier–Stokes equations, Nonlinear Anal., 74 (2011), 775--782.

 

 

 

O.A. Lady\v zhenskaya, On unique solvability ``in the large'' of three-dimensional Cauchy problem for Navier-Stokes equations with axial symmetry, Zap. Nauchn. Sem. LOMI, 7, (1968), 155--177.

 

 

 

S. Leonardi, J.M\'alek, J.Ne\v cas, M. Pokorn\'y, On axially symmetric flows in $\bbR^3$, Z. Anal. Anwendungen, 18 (1999), 639--649.

 

 

J. Neustupa, M. Pokorn\'y, Axisymmetric flow of Navier-Stokes fluid in the whole space with non-zero angular velocity component, Math. Bohem, 126, (2001): 469--481.

 

M. Pokorn\'y, A regularity criterion for the angular velocity component in the case of axisymmetric Navier-Stokes equations, Proceedings of the $4$th European Congress on Elliptic and Parabolic Problems, Rolduc and Gaeta 2001, World Scientific (2002), 233--242.

 

M.R. Ukhovskii, V.I. Yudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space, J. Appl. Math. Mech., 32 (1968), 52--62.

 

L. Zhen, Q.S. Zhang, A Liouville theorem for the axially-symmetric Navier–Stokes equations, J. Funct. Anal., 261 (2011), 2323--2345.

 

 

M. Badiale, G.Tarantello, A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics, Arch. Ration. Mech. Anal., 163 (2002), 259--293.

相關文章
相關標籤/搜索