JavaShuo
欄目
標籤
[paper]One Pixel Attack for Fooling Deep Neural Networks
時間 2020-12-24
標籤
AEs
欄目
系統安全
简体版
原文
原文鏈接
之前對抗攻擊算法都是在整個圖像的所有像素點上做微小的擾動,以達到欺騙模型的目的。而本文的思想是隻改變少量的像素點,甚至在只改變一個像素點的極端情況下就能獲得較好的攻擊效果。提出了一種基於差分進化(DE)生成單像素對抗樣本的黑盒攻擊(僅需要概率標籤)算法。由於DE的固有屬性,僅需要較少的對抗信息就可以欺騙更多類型的網絡。 算法優點 : 高效性 半黑盒攻擊:只需要返回黑盒的類標概率而不用網絡的內部參數
>>阅读原文<<
相關文章
1.
One Pixel Attack for Fooling Deep Neural Networks
2.
[最近成果] Patch-wise Attack for Fooling Deep Neural Network (ECCV2020)
3.
Deep Neural Networks for Object Detection
4.
Understanding Neural Networks Through Deep Visualization
5.
Aggregated Residual Transformations for Deep Neural Networks
6.
Neural Networks and Deep Learning -- Class 4: Deep Neural Networks
7.
Improving Deep Neural Networks
8.
Neural Networks and Deep Learning -- Class 3: Shallow neural networks
9.
Improving Deep Neural Networks [1]
10.
Neural Networks and Deep Learning
更多相關文章...
•
Swift for 循環
-
Swift 教程
•
Scala for循環
-
Scala教程
•
PHP開發工具
•
C# 中 foreach 遍歷的用法
相關標籤/搜索
networks
pixel
attack
neural
deep
Deep Learning
Deep Hash
wide&deep
deep sort
wide&&deep
系統安全
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
CVPR 2020 論文大盤點-光流篇
2.
Photoshop教程_ps中怎麼載入圖案?PS圖案如何導入?
3.
org.pentaho.di.core.exception.KettleDatabaseException:Error occurred while trying to connect to the
4.
SonarQube Scanner execution execution Error --- Failed to upload report - 500: An error has occurred
5.
idea 導入源碼包
6.
python學習 day2——基礎學習
7.
3D將是頁遊市場新賽道?
8.
osg--交互
9.
OSG-交互
10.
Idea、spring boot 圖片(pgn顯示、jpg不顯示)解決方案
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
One Pixel Attack for Fooling Deep Neural Networks
2.
[最近成果] Patch-wise Attack for Fooling Deep Neural Network (ECCV2020)
3.
Deep Neural Networks for Object Detection
4.
Understanding Neural Networks Through Deep Visualization
5.
Aggregated Residual Transformations for Deep Neural Networks
6.
Neural Networks and Deep Learning -- Class 4: Deep Neural Networks
7.
Improving Deep Neural Networks
8.
Neural Networks and Deep Learning -- Class 3: Shallow neural networks
9.
Improving Deep Neural Networks [1]
10.
Neural Networks and Deep Learning
>>更多相關文章<<