若是插件安裝成功,打開Windows—Preferences後,在窗口左側會有Hadoop Map/Reduce選項,點擊此選項,在窗口右側設置Hadoop安裝路徑。框架
四、配置Map/Reduce Locationseclipse
打開Windows—Open Perspective—Other函數
搜索「Map」
選擇Map/Reduce,點擊OK
在右下方看到以下圖所示oop
點擊Map/Reduce Location選項卡,點擊右邊小象圖標,打開Hadoop Location配置窗口:spa
輸入Location Name,任意名稱便可.配置Map/Reduce Master和DFS Mastrer,Host和Port配置成與core-site.xml的設置一致便可。.net
點擊"Finish"按鈕,關閉窗口。插件
點擊左側的DFSLocations—>myhadoop(上一步配置的location name),如能看到user,表示安裝成功
若是以下圖所示表示安裝失敗,請檢查Hadoop是否啓動,以及eclipse配置是否正確。使用eclipse版本與jdk的版本對應,能夠多安裝幾個jdk,靈活切換調用。
3、新建WordCount項目
File—>Project,選擇Map/Reduce Project,輸入項目名稱WordCount等。
在WordCount項目裏新建class,名稱爲WordCount,代碼以下:
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write( word,one );
}
}
}
public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System. err.println("Usage: wordcount <in> <out>" );
System. exit(2);
}
Job job = new Job(conf, "word count" );
job.setJarByClass(WordCount. class);
job.setMapperClass(TokenizerMapper. class);
job.setCombinerClass(IntSumReducer. class);
job.setReducerClass(IntSumReducer. class);
job.setOutputKeyClass(Text. class);
job.setOutputValueClass(IntWritable. class);
FileInputFormat. addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat. setOutputPath(job, new Path(otherArgs[1]));
System. exit(job.waitForCompletion(true) ? 0 : 1);
}
}
4、運行
一、在HDFS上建立目錄input
hadoop fs -mkdir input
或者在Eclipse中的使用快捷功能
二、拷貝本地Test1.txt 到HDFS的input裏
hadoop fs -copyFromLocal /usr/root/Test1.txt input
三、點擊WordCount.java,右鍵,點擊Run As—>Run Configurations,配置運行參數,即輸入和輸出文件夾
hdfs://localhost:9000/user/root/input hdfs://localhost:9000/user/root/output
點擊Run按鈕,運行程序。
四、運行完成後,查看運行結果
方法1:
hadoop fs -ls output
能夠看到有兩個輸出結果,_SUCCESS和part-r-00000
執行hadoop fs -cat output/*
方法2:
展開DFS Locations,以下圖所示,雙擊打開part-r00000查看結果
////////////////////////////////////////////////////////////////////////////
小結:
Hadoop程序處理流程
(1)將文件拆分爲splits,並由MapReduce框架自動完成分割,將每個split分割爲<key,value>對
(2)每一對<key,value>調用一次map函數,處理後生產新的<key,value>對,由Context傳遞給reduce處理
(3)Mapper對<key,value>對進行按key值進行排序,並執行Combine過程,將key值相同的value進行合併。最後獲得Mapper的最終輸出結果
(4)reduce處理,處理後將新的<key,value>對輸出。