Namehtml |
Interesting topicandroid |
Comment |
Edwin Chengit |
非參貝葉斯github |
|
徐亦達老闆算法 |
學習目標:Dirichlet Process, HDP, HDP-HMM, IBP, CRM | |
Alex Kendall設計模式 |
Geometry and Uncertainty in Deep Learning for Computer Visionapi |
語義分割 |
|
general CV | |
目標定位 | ||
DL, CV and the algorithms that are shaping the future of AI. |
Others:
http://www.cnblogs.com/tornadomeet/archive/2012/06/24/2560261.html【理論總結挺好】
http://www.cnblogs.com/charlotte77/【統計機器學習,可能實用】
http://blog.csdn.net/zhangjunhit/article/list/1【論文閱讀筆記不錯】
專一於數據分析之Kaggle and 圖像處理之AR on phone
正如該連接中所言,學習了哪些知識,計算機視覺纔算入門?
計算機視覺涉及面甚廣,找到一類問題好好研究並實踐就好,這類問題在本博客就指AR問題。
Ref: 計算機視覺入門書?
列出現代計算機視覺體系的主要科目(知識點)及其遞進關係。
一個單元表明一門course (12 weeks)或者一本book (600 pages)的學習量,親測。
按部就班很重要,後輩務必去掉大躍進的念頭。
人工智能之計算機視覺 - 學術體系 | ||||
第四層 | 計算機視覺:模型,學習,推理 | |||
第三層 | 統計機器學習 | 深度學習 | ||
第二層 | 機器學習入門 | 計算機視覺入門 | ||
第一層 | 統計推斷 | 貝葉斯分析 | 多元線性分析 | 凸優化 |
編程是基本功,無須贅述。
人工智能之計算機視覺 - 軟件工程 | ||||
第四層 | 實踐!實踐!實踐! | |||
第三層 | Android API, RN, OpenCV, Scikit-learning, ARToolkit, Unity | |||
第二層 | 軟件架構,設計模式,代碼管理,單元測試 | |||
第一層 | C/C++, Python, Java, Kotlin, Javascript, SQL |
如上,乃基本的學習路線,僅是參考,仍可細分,但基本上具有了AR全棧開發者的潛力。
Phones with ARCore support, Feb, 2018
Indoor navigation app: you'll never be lost again
Inside Navigation【好東西,但時機不對】
實踐階段
若是你想要一個能走到冰箱面前而不撞到牆壁的機器人,那就使用 SLAM。
若是你想要一個能識別冰箱中各類物品的機器人,那就使用 Deep Learning。
基本上,這算一個風口;僅指路,不領路,需深耕。
加強現實 - Deep Learning 識別
綜述:
[Object Tracking] Overview of Object Tracking
[Object Tracking] Overview of algorithms for Object Tracking
輪廓識別:
[Object Tracking] Active contour model - Snake Model
[Object Tracking] Deep Boundary detection Tech
[Object Tracking] Contour Detection through Tensorflow running on smartphone
[Object Tracking] Contour Detection through OpenCV
目標定位:
[OpenCV] Real-time object detection with dnn module in OpenCV 3.3
[Localization] SSD - Single Shot MultiBoxDetector
[Localization] MobileNet with SSD
[Tensorflow] Android Meets TF in TensorFlow Dev Summit 2017
[Tensorflow] Object Detection API - prepare your training data
[Tensorflow] Object Detection API - build your training environment
[Tensorflow] Object Detection API - predict through your exclusive model
[Tensorflow] Object Detection API - retrain mobileNet
[Tensorflow] Object Detection API - mobileNet_v1.py
[Object Tracking] Identify and Track Specific Object
加強現實 - SLAM 跟蹤
[SLAM] 01. "Simultaneous Localization and Mapping"
[SLAM] 02. Some basic algorithms of 3D reconstruction
[SLAM] AR Tracking based on which tools?
[ARCORE, Continue...]
衝刺階段
已看到收斂趨勢,查缺補漏,攻克難點疑點。
融會貫通方可運用自如,解決新問題。
生成式網絡 - Conv & Deconv
[Paper] Before GAN: sparse coding
Continue...
深度學習概念 - UFLDL
[UFLDL] Linear Regression & Classification
[UFLDL] Dimensionality Reduction
深度學習理論 - Stats 385
[Stats385] Lecture 01-02, warm up with some questions
[Stats385] Lecture 03, Harmonic Analysis of Deep CNN
[Stats385] Lecture 04: Convnets from Probabilistic Perspective
[Stats385] Lecture 05: Avoid the curse of dimensionality
【暫時不實用,點到爲止】
統計機器學習 - PRML
混沌階段
打地基,處於強化學習初期的不穩定階段,感謝馬爾科夫收斂的性質,目標已收斂;自下向上,基本遵循按部就班的學習過程,夯實知識體系。
瞭解領域內的疑難點,認識技術細節的價值,爲下一階段作準備。
內容多爲早年整理,傾向於參考價值。
Bayesian Analysis
R與採樣方法:
[Bayes] Point --> Line: Estimate "π" by R
[Bayes] Point --> Hist: Estimate "π" by R
[Bayes] qgamma & rgamma: Central Credible Interval
[Bayes] Hist & line: Reject Sampling and Importance Sampling
[Bayes] runif: Inversion Sampling
[Bayes] dchisq: Metropolis-Hastings Algorithm
[Bayes] prod: M-H: Independence Sampler for Posterior Sampling
[Bayes] Metroplis Algorithm --> Gibbs Sampling
[Bayes] Parameter estimation by Sampling
[Bayes] openBUGS: this is not the annoying bugs in programming
[PGM] What is Probabalistic Graphical Models
[PGM] Bayes Network and Conditional Independence
貝葉斯基礎:
[BOOK] Applied Math and Machine Learning Basics
[Bayes] Multinomials and Dirichlet distribution
[Bayes] Understanding Bayes: A Look at the Likelihood
[Bayes] Understanding Bayes: Updating priors via the likelihood
[Bayes] Understanding Bayes: Visualization of the Bayes Factor
[Bayes] Why we prefer Gaussian Distribution
[Bayes] Improve HMM step by step
[Math] Unconstrained & Constrained Optimization
[Bayes] KL Divergence & Evidence Lower Bound
[Bayes] Variational Inference for Bayesian GMMs
[Bayes] Latent Gaussian Process Models
學習指南:
[Math] A love of late toward Mathematics - how to learn it?
[Bayes ML] This is Bayesian Machine Learning 【原文總結得至關好】
Deep Learning
理論:
[BOOK] Applied Math and Machine Learning Basics 【DL書基礎,1至5章筆記】
[Hinton] Neural Networks for Machine Learning - Basic
[Hinton] Neural Networks for Machine Learning - Converage
[Hinton] Neural Networks for Machine Learning - RNN
[Hinton] Neural Networks for Machine Learning - Bayesian
[Hinton] Neural Networks for Machine Learning - Hopfield Nets and Boltzmann Machine
編程:
[Tensorflow] Architecture - Computational Graphs 【TF 框架】
[Tensorflow] Practice - The Tensorflow Way 【相對基礎】
[Tensorflow] Cookbook - The Tensorflow Way 【前者的 Detail】
[Tensorflow] Cookbook - Neural Network 【代碼基礎寫法】
[Tensorflow] Cookbook - CNN 【卷積網絡專題】
[Tensorflow] Cookbook - Object Classification based on CIFAR-10
[Tensorflow] Cookbook - Retraining Existing CNNs models - Inception Model
[Tensorflow] RNN - 01. Spam Prediction with BasicRNNCell
[Tensorflow] RNN - 02. Movie Review Sentiment Prediction with LSTM
[Tensorflow] RNN - 03. MultiRNNCell for Digit Prediction
[Tensorflow] RNN - 04. Work with CNN for Text Classification
[TensorBoard] Cookbook - Tensorboard
[TensorBoard] Train and Test accuracy simultaneous tracking
[TensorBoard] Name & Variable scope
訓練:
[Converge] Gradient Descent - Several solvers
[Converge] Backpropagation Algorithm 【BP實現細節】
[Converge] Feature Selection in training of Deep Learning 【特性相關性的影響】
[Converge] Training Neural Networks 【cs231n-lec5&6,推薦】
[Converge] Batch Normalisation
卷積:
[CNN] What is Convolutional Neural Network 【導論】
[CNN] Understanding Convolution 【圖像角度理解】
[CNN] Tool - Deep Visualization
模型:
[Localization] R-CNN series for Localization and Detection
[Localization] YOLO: Real-Time Object Detection
[Localization] SSD - Single Shot MultiBoxDetector
[Localization] MobileNet with SSD
其餘:
[GPU] CUDA for Deep Learning, why?
[GPU] DIY for Deep Learning Workstation
[Keras] Install and environment setting
[Keras] Develop Neural Network With Keras Step-By-Step
[GAN] *What is Generative networks 【導論,」生成式模型「有哪些,與」判別式模型「同級】
[GAN] How to use GAN - Meow Generator
[DQN] What is Deep Reinforcement Learning 【導論:此方向優先級低】
[Understanding] Compressive Sensing and Deep Model 【感知壓縮,暫且不懂】
[DL] *Deep Learning for Industry - Wang Yi 【課外閱讀】
Machine Learning
/* ML文件夾待整理 */
IR & NLP基礎
檢索:
[IR] Tolerant Retrieval & Spelling Correction & Language Model
[IR] Open Source Search Engines
壓縮:
[IR] Advanced XML Compression - ISX
[IR] Advanced XML Compression - XBW
[IR] Bigtable: A Distributed Storage System for Semi-Structured Data
[IR] Suffix Trees and Suffix Arrays
[IR] Time and Space Efficiencies Analysis of Full-Text Index Techniques
[IR] Extraction-based Text Summarization
其餘:
【以上內容需隨recommended system一塊兒再過一遍,完善體系】
AR基礎
[Artoolkit] ARToolKit's SDK Structure on Android
[Artoolkit] Framework Analysis of nftSimple
[Artoolkit] kpmMatching & Tracking of nftSimple
[Artoolkit] Android Sample of nftSimple
[Artoolkit] Can I Use LGPL code for commercial application
[Artoolkit] Marker of nftSimple
[Artoolkit] ARSimpleNativeCarsProj for Multi Markers Tracking
[Unity3D] 02 - ** Editor Scripting, Community Posts, Project Architecture
[Unity3D] 03 - Component of UI
[Unity3D] 05 - Access to DB or AWS
【簡單涉及3D建模知識點,非重點】
CV基礎
概念:
[OpenCV] Install openCV in Qt Creator
[OpenCV] Basic data types - Matrix
[OpenCV] IplImage and Operation
[OpenCV] Image Processing - Image Elementary Knowledge
[OpenCV] Image Processing - Grayscale Transform
[OpenCV] Image Processing - Frequency Domain Filtering
[OpenCV] Image Processing - Spatial Filtering
[OpenCV] Image Processing - Fuzzy Set
實踐:
// 內容將合併,從新整理
[OpenCV] Samples 01: drawing【幾何圖案、文字等】
[OpenCV] Samples 02: [ML] kmeans【聚類算法】
[OpenCV] Samples 03: cout_mat【Mat計算能力】
[OpenCV] Samples 04: contours2【二值圖案找輪廓】
[OpenCV] Samples 05: convexhull【散點的凸包輪廓】
[OpenCV] Samples 06: [ML] logistic regression【線性二分類】
[OpenCV] Samples 07: create_mask【鼠標圈圖】
[OpenCV] Samples 08: edge【邊緣檢測】
[OpenCV] Samples 09: plImage <==> Mat 【色域通道分離】
[OpenCV] Samples 10: imagelist_creator【圖片地址list參數】
[OpenCV] Samples 11: image sequence【視頻流提取】
[OpenCV] Samples 12: laplace【視頻流處理】
[OpenCV] Samples 13: opencv_version【版本信息顯示】
[OpenCV] Samples 14: kalman filter【預測下一個狀態】
[OpenCV] Samples 15: Background Subtraction and Gaussian mixture models【背景差分】
[OpenCV] Samples 16: Decompose and Analyse RGB channels【色域通道分離】
[OpenCV] Samples 17: Floodfill【聚類算法】
[OpenCV] Samples 18: Load image and check its attributes【圖片屬性】
擴展:
[Android Studio] Using Java to call OpenCV
[Android Studio] Using NDK to call OpenCV
[OpenCV] Install OpenCV 3.3 with DNN
[OpenCV] Install OpenCV 3.4 with DNN
趣碼收集:
[Link] Face Swap Collection
[Link] Face Swap without DLIB【代碼可用】
算法基礎
[Algorithm] Deferred Acceptance Algorithm
[Algorithm] Beating the Binary Search algorithm – Interpolation Search, Galloping Search
[Algorithm] Asymptotic Growth Rate
[Algorithm] Polynomial and FFT
[Algorithm] String Matching and Hashing
[Optimization] Dynamic programming
[Optimization] Advanced Dynamic programming
Everything here starts from 2016