jdk1.7 和 jdk1.8作對比閱讀java
jdk1.7數組
public static <T extends Comparable<? super T>> void sort(List<T> var0) { Object[] var1 = var0.toArray(); //對var1排序後 Arrays.sort(var1); ListIterator var2 = var0.listIterator(); //從新覆蓋到 var0 for(int var3 = 0; var3 < var1.length; ++var3) { var2.next(); var2.set((Comparable)var1[var3]); } } public static <T> void sort(List<T> var0, Comparator<? super T> var1) { Object[] var2 = var0.toArray(); Arrays.sort(var2, var1); ListIterator var3 = var0.listIterator(); for(int var4 = 0; var4 < var2.length; ++var4) { var3.next(); var3.set(var2[var4]); } }
jdk1.8ide
public static <T extends Comparable<? super T>> void sort(List<T> list) { list.sort(null); }
default void sort(Comparator<? super E> c) { Object[] a = this.toArray(); Arrays.sort(a, (Comparator) c); ListIterator<E> i = this.listIterator(); for (Object e : a) { i.next(); i.set((E) e); } }
最終都是走到了 Arrays.sort方法優化
public static <T> void sort(T[] a, Comparator<? super T> c) { if (c == null) { sort(a); } else { if (LegacyMergeSort.userRequested) legacyMergeSort(a, c); else TimSort.sort(a, 0, a.length, c, null, 0, 0); } }
這裏注意 LegacyMergeSort.userRequested ,讀取的java.util.Arrays.useLegacyMergeSort 用來兼容歷史排序方法,好比1.7版本的jdk想使用1.6的排序方法,就須要配置這個參數 java.util.Arrays.useLegacyMergeSort=truethis
static final class LegacyMergeSort { private static final boolean userRequested = java.security.AccessController.doPrivileged( new sun.security.action.GetBooleanAction( "java.util.Arrays.useLegacyMergeSort")).booleanValue(); }
接下來先看一下1.7之前使用的哪一種排序辦法排序
private static void mergeSort(Object[] src, Object[] dest, int low, int high, int off) { int length = high - low; // 這裏是一個優化點,若是是一個比較小的數組 直接使用插入排序 if (length < INSERTIONSORT_THRESHOLD) {//這裏默認是 7數組長度小於7 for (int i=low; i<high; i++) for (int j=i; j>low && ((Comparable) dest[j-1]).compareTo(dest[j])>0; j--) swap(dest, j, j-1); return; } // Recursively sort halves of dest into src int destLow = low; int destHigh = high; low += off; high += off; int mid = (low + high) >>> 1;//二進制右移一位至關於除以2 mergeSort(dest, src, low, mid, -off); mergeSort(dest, src, mid, high, -off); // If list is already sorted, just copy from src to dest. This is an // optimization that results in faster sorts for nearly ordered lists. if (((Comparable)src[mid-1]).compareTo(src[mid]) <= 0) {//若是兩部分分別排序後,左側的最大 小於右側最小 說明總體 src已經有序 直接複製到 dest System.arraycopy(src, low, dest, destLow, length); return; } // for(int i = destLow, p = low, q = mid; i < destHigh; i++) {//分別遍歷左側 和右側 合併到dest,須要考慮到某一個先遍歷到頭後的情景 q>=high 和 p<mid if (q >= high || p < mid && ((Comparable)src[p]).compareTo(src[q])<=0) dest[i] = src[p++]; else dest[i] = src[q++]; } } /** * Swaps x[a] with x[b]. */ private static void swap(Object[] x, int a, int b) { Object t = x[a]; x[a] = x[b]; x[b] = t; }
綜合下來就是 歸併+插入排序完成的。element
接下來看1.7 和1.8的實現,他們的變化不變,這裏就只貼1.8了rem
根據是否有 Comparator 參數分別爲,帶Comparator參數it
static <T> void sort(T[] a, int lo, int hi, Comparator<? super T> c, T[] work, int workBase, int workLen) { assert c != null && a != null && lo >= 0 && lo <= hi && hi <= a.length; int nRemaining = hi - lo; if (nRemaining < 2)//長度小於2 直接返回 return; // Arrays of size 0 and 1 are always sorted // If array is small, do a "mini-TimSort" with no merges if (nRemaining < MIN_MERGE) {//長度小於32 直接返回 int initRunLen = countRunAndMakeAscending(a, lo, hi, c);//獲取有序段,即lo 到幾是有序的(若是是從大到小有序的話,會對這一小段進行反轉) //執行到這裏,0,到initRunLen 是有序的了 binarySort(a, lo, hi, lo + initRunLen, c);//二分插入排序,就是把initRunLen位置後面的數據,經過二分搜索定位的方式插入到前面有序段落裏面 // 這裏想吐槽一下 和 1.7以前的直接對小數組直接進行插入排序 感受複雜了好多,不過確實複雜度變小了 從O(n^2) 變爲了 O(nlogn) return; } /** * March over the array once, left to right, finding natural runs, * extending short natural runs to minRun elements, and merging runs * to maintain stack invariant. */ TimSort<T> ts = new TimSort<>(a, c, work, workBase, workLen); int minRun = minRunLength(nRemaining);//獲取有序run塊的最小長度 do { // Identify next run int runLen = countRunAndMakeAscending(a, lo, hi, c);//獲取有序遞增塊的長度 // If run is short, extend to min(minRun, nRemaining) if (runLen < minRun) {//若是長度太短,進行優化補充 int force = nRemaining <= minRun ? nRemaining : minRun; binarySort(a, lo, lo + force, lo + runLen, c); runLen = force; } // Push run onto pending-run stack, and maybe merge ts.pushRun(lo, runLen); ts.mergeCollapse();//兩個有序塊進行合併 // Advance to find next run lo += runLen; nRemaining -= runLen; } while (nRemaining != 0); // Merge all remaining runs to complete sort assert lo == hi; ts.mergeForceCollapse(); assert ts.stackSize == 1; }
//用於獲取一個遞增連續區域長度 private static int countRunAndMakeAscending(Object[] a, int lo, int hi) { assert lo < hi; int runHi = lo + 1; if (runHi == hi) return 1; // Find end of run, and reverse range if descending if (((Comparable) a[runHi++]).compareTo(a[lo]) < 0) { // Descending while (runHi < hi && ((Comparable) a[runHi]).compareTo(a[runHi - 1]) < 0) runHi++; reverseRange(a, lo, runHi); } else { // Ascending while (runHi < hi && ((Comparable) a[runHi]).compareTo(a[runHi - 1]) >= 0) runHi++; } return runHi - lo; }
//二分插入排序 private static void binarySort(Object[] a, int lo, int hi, int start) { assert lo <= start && start <= hi; if (start == lo) start++; for ( ; start < hi; start++) { Comparable pivot = (Comparable) a[start]; // Set left (and right) to the index where a[start] (pivot) belongs int left = lo; int right = start; assert left <= right; /* * Invariants: * pivot >= all in [lo, left). * pivot < all in [right, start). */ while (left < right) { int mid = (left + right) >>> 1; if (pivot.compareTo(a[mid]) < 0) right = mid; else left = mid + 1; } assert left == right; /* * The invariants still hold: pivot >= all in [lo, left) and * pivot < all in [left, start), so pivot belongs at left. Note * that if there are elements equal to pivot, left points to the * first slot after them -- that's why this sort is stable. * Slide elements over to make room for pivot. */ int n = start - left; // The number of elements to move // Switch is just an optimization for arraycopy in default case switch (n) { case 2: a[left + 2] = a[left + 1]; case 1: a[left + 1] = a[left]; break; default: System.arraycopy(a, left, a, left + 1, n); } a[left] = pivot; } }
接下來着重看一下最後的排序步驟io
private void pushRun(int runBase, int runLen) { this.runBase[stackSize] = runBase; this.runLen[stackSize] = runLen; stackSize++; }
private void mergeCollapse() { while (stackSize > 1) { int n = stackSize - 2; if (n > 0 && runLen[n-1] <= runLen[n] + runLen[n+1]) { if (runLen[n - 1] < runLen[n + 1]) n--; mergeAt(n); } else if (runLen[n] <= runLen[n + 1]) { mergeAt(n); } else { break; // Invariant is established } } }
總結,1.7以前的排序更易懂,插入+歸併,數組長度低於7直接插入排序,
1.7開始使用TimSort+二分插入,數組長度小於32,直接二分插入排序
TimSort的平均時間複雜度和最壞時間複雜度和歸併同樣O(nlogn),可是其最好狀況能達到O(n)
有理解錯誤的地方歡迎你們指出,後面有時間會看一下 java9的 sort實現方式作了哪些優化