現有城市信息和產品信息兩張表在MySQL中,另外有用戶點擊產品日誌以文本形式存在hdfs上,現要求統計每一個個城市區域下點擊量前三的產品名,具體信息見下方。mysql
mysql> show tables;
+---------------------------------+
| Tables_in_d7 |
+---------------------------------+
| city_info |
| product_info |
| result_product_area_clicks_top3 |
+---------------------------------+
3 rows in set (0.00 sec)
mysql> desc city_info;
+-----------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------+--------------+------+-----+---------+-------+
| city_id | int(11) | YES | | NULL | |
| city_name | varchar(255) | YES | | NULL | |
| area | varchar(255) | YES | | NULL | |
+-----------+--------------+------+-----+---------+-------+
3 rows in set (0.00 sec)
mysql> select * from city_info;
+---------+-----------+------+
| city_id | city_name | area |
+---------+-----------+------+
| 1 | BEIJING | NC |
| 2 | SHANGHAI | EC |
| 3 | NANJING | EC |
| 4 | GUANGZHOU | SC |
| 5 | SANYA | SC |
| 6 | WUHAN | CC |
| 7 | CHANGSHA | CC |
| 8 | XIAN | NW |
| 9 | CHENGDU | SW |
| 10 | HAERBIN | NE |
+---------+-----------+------+
10 rows in set (0.00 sec)
mysql> desc product_info;
+--------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------------+--------------+------+-----+---------+-------+
| product_id | int(11) | YES | | NULL | |
| product_name | varchar(255) | YES | | NULL | |
| extend_info | varchar(255) | YES | | NULL | |
+--------------+--------------+------+-----+---------+-------+
3 rows in set (0.00 sec)
mysql> select * from product_info limit 10; <-- product_info總數100
+------------+--------------+----------------------+
| product_id | product_name | extend_info |
+------------+--------------+----------------------+
| 1 | product1 | {"product_status":1} |
| 2 | product2 | {"product_status":1} |
| 3 | product3 | {"product_status":1} |
| 4 | product4 | {"product_status":1} |
| 5 | product5 | {"product_status":1} |
| 6 | product6 | {"product_status":1} |
| 7 | product7 | {"product_status":1} |
| 8 | product8 | {"product_status":1} |
| 9 | product9 | {"product_status":0} |
| 10 | product10 | {"product_status":1} |
+------------+--------------+----------------------+
10 rows in set (0.00 sec)
[hadoop@hadoop001 data]$ more user_click.txt
95,2bf501a7637549c89cf55342331b15db,2016-05-05 21:01:56,1(city_id),72(product_id)
95,2bf501a7637549c89cf55342331b15db,2016-05-05 21:52:26,1,68
95,2bf501a7637549c89cf55342331b15db,2016-05-05 21:17:03,1,40
95,2bf501a7637549c89cf55342331b15db,2016-05-05 21:32:07,1,21
95,2bf501a7637549c89cf55342331b15db,2016-05-05 21:26:06,1,63
95,2bf501a7637549c89cf55342331b15db,2016-05-05 21:03:11,1,60
95,2bf501a7637549c89cf55342331b15db,2016-05-05 21:43:43,1,30
95,2bf501a7637549c89cf55342331b15db,2016-05-05 21:09:58,1,96
95,2bf501a7637549c89cf55342331b15db,2016-05-05 21:18:45,1,71
95,2bf501a7637549c89cf55342331b15db,2016-05-05 21:42:39,1,8
95,2bf501a7637549c89cf55342331b15db,2016-05-05 21:24:30,1,6
95,2bf501a7637549c89cf55342331b15db,2016-05-05 21:29:49,1,26
95,5b8cdcb0b18645a19f4e3e34a241012e,2016-05-05 20:24:12,1,83
95,5b8cdcb0b18645a19f4e3e34a241012e,2016-05-05 20:07:50,1,62
95,5b8cdcb0b18645a19f4e3e34a241012e,2016-05-05 20:19:31,1,61
95,5b8cdcb0b18645a19f4e3e34a241012e,2016-05-05 20:40:51,1,46
....
[hadoop@hadoop001 data]$ wc -l user_click.txt
11448 user_click.txt
複製代碼
1)city_info表和product_info表經過sqoop放到Hive裏面
2)經過user_click關聯Hive裏面的city_info和product_info
3)再使用窗口函數求分組內的TOPN將結果sqoop導入MySQL
4)shell腳本封裝這個業務線的全部代碼的思路,須要說起的一點,由於city_info/product_info數據變更少,因此經過其餘的腳本導入,這個shell腳本不涉及,但我下面步驟依然會寫出來。
5)使用crontab觸發,天天凌晨2點開始執行
注意點:
a) 每次建立的臨時表,在執行以前必定要先刪除,要使用if not exits
b) 關鍵的執行要有日誌輸出
c) shell腳本如何解決冪等性問題
sql
在sqoop部署篇講到過怎麼部署和使用sqoop,這裏不在說明,直接上代碼。shell
# 這裏給出hive裏的city_info的表結構
hive (d7)> create table city_info(
city_id int,
city_name string,
area string
)
row format delimited fields terminated by '\t';
# 導入city_info
[hadoop@hadoop001 ~]$ sqoop import \
--connect "jdbc:mysql://localhost:3306/d7" \
--username root \
--password root \
--table city_info \
--split-by 'city_id' \
--fields-terminated-by '\t' \
--hive-import \
--hive-database d7 \
--target-dir '/user/hive/warehouse/d7.db/city_info' \
--delete-target-dir \
-m 2
# 這裏給出hive裏的product_info的表結構
hive (d7)> create table product_info(
product_id int,
product_name string,
extend_info string
)
row format delimited fields terminated by '\t';
# 導入product_info
[hadoop@hadoop001 ~]$ sqoop import \
--connect "jdbc:mysql://localhost:3306/d7" \
--username root \
--password root \
--table product_info \
--split-by 'product_id' \
--fields-terminated-by '\t' \
--hive-import \
--hive-database d7 \
--target-dir '/user/hive/warehouse/d7.db/product_info' \
--delete-target-dir \
-m 2
複製代碼
ps:若是你第一次用sqoop的話,這裏確定會有兩個坑。這裏暫且不說,下篇文章解答。vim
生產上hive的user_click表確定是個一直數據增加的表,因此該表確定是個分區表。可是通常來講清洗好的前一天數據會直接放在user_click表存放hdfs上路徑上,好比分區表存放路徑爲hdfs://hadoop001:9000/user/hive/warehouse/d7.db/user_click,那麼生產上會將2016-05-05日誌清洗好並在該路徑上建立分區路徑。這時候你查詢分區表不會出現該分區數據,該怎麼高效的將數據刷新到分區表呢?請看下方代碼bash
# 先給出user_click表結構
hive (d7)> create table user_click(
user_id int,
session_id string,
action_time string,
city_id int,
product_id int
)
partitioned by(day string)
row format delimited fields terminated by ',';
# 刷新分區表,另外一種刷新方式不推薦,過於暴力
hive (d7)> alter table user_click add if not exists partition(day='2016-05-05');
複製代碼
臨時表有區域名,產品名,點擊量三個字段。session
hive (d7)> drop table if exists tmp_product_area_clicks;
hive (d7)> create table tmp_product_area_clicks as
> select b.area,c.product_name,count(1) as click_count from user_click a
> left join city_info b on a.city_id=b.city_id
> left join product_info c on a.product_id=c.product_id
> where a.day='2016-05-05'
> group by b.area,c.product_name
複製代碼
使用row_number()函數函數
hive (d7)> drop table if exists result_product_area_clicks_top3;
hive (d7)> create table result_product_area_clicks_top3
> row format delimited fields terminated by '\t' as
> select * from (
> select
> "2016-05-05" day,product_id,product_name,area,click_count, <-- 日期會在腳本中更改
> row_number() over(partition by area order by click_count desc) rank
> from tmp_product_area_clicks
> ) t where t.rank<=3;
複製代碼
# 咱們事先在MySQL建立好結果表,下面爲表結構
create table result_product_area_clicks_top3(
day varchar(15),
product_id int(11),
product_name varchar(50),
area varchar(10),
click_count int(11),
rank int(10)
)
# 爲了冪等性,會將MySQL結果表該日期的數據先刪掉
# 日期會在腳本中更改
mysql> delete from result_product_area_clicks_top3 where day='2016-05-05';
[hadoop@hadoop001 ~]$ sqoop export \
--connect jdbc:mysql://localhost:3306/d7 \
--password root \
--username root \
--table result_product_area_clicks_top3\
--export-dir /user/hive/warehouse/d7_hive.db/result_product_area_clicks_top3 \
--columns "day,product_id,product_name,area,click_count,rank" \
--fields-terminated-by '\t' \
-m 2
複製代碼
hive離線是一天一次,是今天某個時間去運行昨天的數據,因此要在shell腳本中獲取前一天,該命令爲'date --date '1 day ago' +%Y-%m-%d'。下面就是shell腳本代碼。oop
[hadoop@hadoop001 ~]$ vim top3.sh
#!/bin/bash
CURRENT=`date +%Y-%m-%d_%H:%M:%S`
USE_DAY=`date --date '1 day ago' +%Y-%m-%d`
echo '當前使用的日期爲:'$USE_DAY''
echo ''$CURRENT',開始刷新分區'
HIVE_PARTITION_SQL="alter table d7.user_click add if not exists partition(day='${USE_DAY}');"
hive -e "${HIVE_PARTITION_SQL}"
echo ''$CURRENT',開始建立臨時表,其中數據爲每一個區域下每一個產品的點擊數'
HIVE_TMP_SQL="drop table if exists tmp_product_area_clicks; create table tmp_product_area_clicks as select b.area,c.product_name,count(1) as click_count from user_click a left join city_info b on a.city_id=b.city_id left join product_info c on a.product_id=c.product_id where a.day='${USE_DAY}' group by b.area,c.product_name;"
hive -e "${HIVE_TMP_SQL}"
echo ''$CURRENT',開始建立結果表,其中數據爲每一個區域下每一個產品的前三點擊數'
HIVE_RESULT_SQL="drop table if exists result_product_area_clicks_top3; create table result_product_area_clicks_top3 row format delimited fields terminated by '\t' as select * from ( select '${USE_DAY}' day,product_id,product_name,area,click_count, row_number() over(partition by area order by click_count desc) rank from tmp_product_area_clicks ) t where t.rank<=3;"
hive -e "${HIVE_RESULT_SQL}"
echo ''$CURRENT',保持冪等性,開始刪除MySQL結果表中當前'$USE_DAY'數據'
MySQL_DETELE_SQL="delete from result_product_area_clicks_top3 where day='${USE_DAY}';"
sudo mysql -uroot -proot -e "${MySQL_DETELE_SQL}"
echo ''$CURRENT',開始將Hive結果表導入MySQL'
sqoop export \
--connect jdbc:mysql://localhost:3306/d7 \
--password root \
--username root \
--table result_product_area_clicks_top3\
--export-dir /user/hive/warehouse/d7_hive.db/result_product_area_clicks_top3 \
--columns "day,product_id,product_name,area,click_count,rank" \
--fields-terminated-by '\t' \
-m 2
echo ''$CURRENT',整個流程結束,請查看MySQL中數據是否導入'
複製代碼
使用crontab來作定時,具體見下方代碼post
[hadoop@hadoop001 ~]$ crontab -e
* 2 * * * nohup /home/hadoop/top3.sh >> /tmp/top3_logs.log 2>&1 &
複製代碼