Machine Learning-KNN

1、定義

url:https://en.wikipedia.org/wiki...python

In pattern recognition, the k-nearest neighbors algorithm (k-NN) is a non-parametric method used for classification and regression.[1] In both cases, the input consists of the k closest training examples in the feature space. The output depends on whether k-NN is used for classification or regression:

In k-NN classification, the output is a class membership. An object is classified by a majority vote of its neighbors, with the object being assigned to the class most common among its k nearest neighbors (k is a positive integer, typically small). If k = 1, then the object is simply assigned to the class of that single nearest neighbor.app

In k-NN regression, the output is the property value for the object. This value is the average of the values of its k nearest neighbors.url

2、我的理解

其實簡單理解就是:經過計算新加入點與附近K個點的距離,而後尋找到距離最近的K個點,進行佔比統計,找到k個點中數量佔比最高的target,那麼新加入的樣本,它的target就是頻數最高的target

3、實踐

語言:python3

歐拉距離:
圖片描述spa

# -*- coding: utf-8 -*-
"""
Created on Sat Mar 17 11:17:18 2018

@author: yangzinan
"""

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from math import sqrt

from collections import Counter 


# 樣本
x= [
              [3.393533211,2.331273381],
              [3.110073483,1.781539638],
              [1.343808831,3.368360954],
              [3.582294042,4.679179110],
              [2.280362439,2.866990263],
              [7.423436942,4.696522875],
              [5.745051997,3.533989803],
              [9.172168622,2.511101045],
              [7.792783481,3.424088941],
              [7.939820817,0.791637231]
            ]

y= [0,0,0,0,0,1,1,1,1,1]


x_train = np.array(x)
y_train = np.array(y)
              

# 繪圖
plt.scatter(x_train[y_train==0,0],x_train[y_train==0,1],color="red")
plt.scatter(x_train[y_train==1,0],x_train[y_train==1,1],color="green")



x_point = np.array([8.093607318,3.365731514])


plt.scatter(x_point[0],x_point[1],color="blue")
plt.show()


#計算距離 歐拉距離

distances = []

for d in x_train:
    # 求出和x相差的距離
    d_sum = sqrt(np.sum(((d-x)**2)))
    distances.append(d_sum)

print(distances)

#求出最近的點
#按照從小到大的順序,獲得下標
nearest = np.argsort(distances)

#指定應該求出的個數
k = 3
topK_y = []

#求出前K個target
for i in nearest[:k]:
    topK_y.append(y_train[i])


#獲得頻數最高的target,那麼新加入點target 就是頻數最高的
predict_y = Counter(topK_y).most_common(1)[0][0]

print(predict_y)

圖片描述

相關文章
相關標籤/搜索