python的多線程並非徹底雞肋的存在,得分狀況來看。在IO密集型任務下,能提升多倍效率。在CPU密集型任務下,使用多進程也能規避GIL鎖。
python3標準庫concurrent.futures
比原Thread封裝更高,多線程concurrent.futures.ThreadPoolExecutor
,多進程concurrent.futures.ProcessPoolExecutor
利用concurrent.futures.Future
來進行各類便捷的數據交互,包括處理異常,都在result()中再次拋出。python
import time from concurrent import futures from concurrent.futures import ThreadPoolExecutor def display(args): print(time.strftime('[%H:%M:%S]', time.localtime()), end=' ') print(args) def task(n): """只是休眠""" display('begin sleep {}s.'.format(n)) time.sleep(n) display('ended sleep {}s.'.format(n)) def do_many_task_inorder(): """多線程 按任務發佈順序依次等待完成 """ tasks = [5, 4, 3, 2, 1] with ThreadPoolExecutor(max_workers=3) as executor: future_list = [executor.submit(task, arg) for arg in tasks] display('非阻塞運行') for future in future_list: display(future) display('統一結束(有序)') for future in future_list: display(future.result()) def do_many_task_disorder(): """多線程執行 先完成先顯示 """ tasks = [5, 4, 3, 2, 1] with ThreadPoolExecutor(max_workers=3) as executor: future_list = [executor.submit(task, arg) for arg in tasks] display('非阻塞運行') for future in future_list: display(future) display('統一結束(無序)') done_iter = futures.as_completed(future_list) # generator for done in done_iter: display(done) if __name__ == '__main__': do_many_task_inorder() do_many_task_disorder()