動做傳感器對於監測設備的移動很是有用,例如:傾斜、震動、旋轉和擺動都屬於動做傳感器的監測範圍。設備的移動一般是對用戶輸入的直接反應。java
全部動做傳感器都會返回三個浮點數的值,對於不一樣的傳感器,這三個值的意義不一樣。例如,對於加速度傳感器,會返回三個座標軸的加速數據。對於陀螺儀傳感器,會返回三個座標周的旋轉角速度。android
動做傳感器的使用與數據返回:加速度傳感器app
若是單純的使用加速度傳感器傳回的數據,會發現Z軸的的加速度是9.8多。因此看來安卓是把靜止的手機豎直加速度默認爲重力加速度,而且XY軸的數據也不是很準確。這並非咱們要的效果。因此須要藉助重力傳感器的數據來調整加速的的傳感器,使其的數據更加精確。ide
import android.hardware.Sensor; import android.hardware.SensorEvent; import android.hardware.SensorEventListener; import android.hardware.SensorManager; import android.support.v7.app.AppCompatActivity; import android.os.Bundle; import java.util.List; public class MainActivity extends AppCompatActivity implements SensorEventListener{ private SensorManager mSensorManager; private float[] gravity = new float[3]; @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_main); mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE); } @Override public void onSensorChanged(SensorEvent sensorEvent) { //this method will be called when the sensor accuracy changed switch (sensorEvent.sensor.getType()){ case Sensor.TYPE_ACCELEROMETER: final float alpha = (float) 0.8; gravity[0] = alpha * gravity[0] + (1 - alpha) * sensorEvent.values[0]; gravity[1] = alpha * gravity[1] + (1 - alpha) * sensorEvent.values[1]; gravity[2] = alpha * gravity[2] + (1 - alpha) * sensorEvent.values[2]; String data = "Acceleration:\n"+"X:"+(sensorEvent.values[0] - gravity[0])+"\n"+"Y:"+(sensorEvent.values[1] - gravity[1])+"\n"+"Z:"+(sensorEvent.values[2] - gravity[2])+"\n"; System.out.println(data); //System.out.println(sensorEvent.values[2] - gravity[2]); break; case Sensor.TYPE_GRAVITY: gravity[0]=sensorEvent.values[0]; gravity[1]=sensorEvent.values[1]; gravity[2]=sensorEvent.values[2]; break; } } @Override public void onAccuracyChanged(Sensor sensor, int i) {//this method will be called when the sensor data changed } @Override protected void onResume() { super.onResume(); mSensorManager.registerListener(this,mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER),SensorManager.SENSOR_DELAY_UI); mSensorManager.registerListener(this,mSensorManager.getDefaultSensor(Sensor.TYPE_GRAVITY),SensorManager.SENSOR_DELAY_FASTEST); } @Override protected void onPause() { super.onPause(); mSensorManager.unregisterListener(this); } }
咱們在onResume方法中註冊傳感器。在onPause方法中解除註冊傳感器。this
視頻裏面並無講爲何這麼處理數據能減少偏差。我看了半天也沒有看出來——!因此這個筆記就記下來這個減少偏差的方法吧。spa
輸出結果:code
07-15 20:49:12.663 28389-28389/bhu.com.myapplication I/System.out: Acceleration:
07-15 20:49:12.673 28389-28389/bhu.com.myapplication I/System.out: X:0.010284543
07-15 20:49:12.683 28389-28389/bhu.com.myapplication I/System.out: Y:7.79517E-4
07-15 20:49:12.683 28389-28389/bhu.com.myapplication I/System.out: Z:0.010925293
07-15 20:49:12.723 28389-28389/bhu.com.myapplication I/System.out: Acceleration:
07-15 20:49:12.733 28389-28389/bhu.com.myapplication I/System.out: X:-0.10639935
07-15 20:49:12.733 28389-28389/bhu.com.myapplication I/System.out: Y:0.017798994
07-15 20:49:12.733 28389-28389/bhu.com.myapplication I/System.out: Z:0.018583298
07-15 20:49:12.793 28389-28389/bhu.com.myapplication I/System.out: Acceleration:
07-15 20:49:12.793 28389-28389/bhu.com.myapplication I/System.out: X:0.04853201
07-15 20:49:12.793 28389-28389/bhu.com.myapplication I/System.out: Y:-0.03271977
07-15 20:49:12.793 28389-28389/bhu.com.myapplication I/System.out: Z:0.04224682
看來這個加速度傳感器仍是很敏感的。微小的震動也能精確的測量出來。視頻