傳送門: Palindrome Indexc++
Problem Statement算法
You are given a string of lower case letters. Your task is to figure out the index of the character on whose removal it will make the string a palindrome. There will always be a valid solution.
In case the string is already a palindrome, then -1
is also a valid answer along with possible indices.優化
Input Formatthis
The first line contains T, i.e. the number of test cases.
T lines follow, each containing a string.spa
Output Formatcode
Print the position (0 index) of the letter by removing which the string turns into a palindrome. For a string, such asorm
bcbc
we can remove b at index 0 or c at index 3. Both answers are accepted.blog
Constraints
1≤T≤20
1≤ length of string ≤100005
All characters are Latin lower case indexed.backbone
Sample Inputrem
3 aaab baa aaa
Sample Output
3 0 -1
Explanation
In the given input, T = 3,
讀題時需注意:
題目中先說 「There will always be a valid solution. 」,而後才說「In case the string is already a palindrome, then -1
is also a valid answer along with possible indices.」。注意體會這句話,咱們首先應注意到,即便輸入的字符串S是個迴文串,也能夠刪除某個字母使其仍爲迴文串。若是|S|爲奇數,則刪除中間那個字母,結果串仍爲迴文串。若是|S|爲偶數則刪除中間兩個相等字符中的任一個,結果串也迴文。
徹底暴力的解法:
枚舉要刪除的字母,檢查結果串是否迴文。複雜度O(N^2)。
1 #include<bits/stdc++.h> 2 using namespace std; 3 const int MAX_N=1e5+10; 4 char s[MAX_N]; 5 int len; 6 int opp(int j, int x){ 7 if(x==0){ 8 return len+1-j; 9 } 10 if(j<x){ 11 return len-j<x? len-j: len-j+1; 12 } 13 else{ 14 return len+2-j; 15 } 16 } 17 bool ok(int x){ 18 int tmp=x?(len-1)>>1:len>>1; 19 for(int i=0, j=1; i<tmp; i++, j++){ 20 if(j==x){ 21 j++; 22 } 23 if(s[j]!=s[opp(j, x)]){ 24 return false; 25 } 26 } 27 return true; 28 } 29 int main(){ 30 int T; 31 scanf("%d", &T); 32 while(T--){ 33 scanf("%s", s+1); 34 len=strlen(s+1); 35 for(int i=0; i<=len; i++){ 36 if(ok(i)){ 37 printf("%d\n", i-1); 38 break; 39 } 40 } 41 } 42 return 0; 43 }
只是這解法過於暴力,TLE。
下面就要引入這道題給個人最大啓示了:
尋找有助於簡化問題的必要條件
考慮一下上面的單純暴力算法有那些冗餘計算。
首先必須指出一個問題:優化算法的途徑是充分考慮問題的特殊性。
其次要注意到:題目要求的是存在性判別,上面的算法枚舉被刪除字符的位置是無可厚非的。
接着考慮一下使上面的算法達到最壞狀況的數據:
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaab
在這種狀況下,上述算法必須枚舉到最後一個字符才能肯定答案。
咱們不難發現一個問題