原文地址: Generating Names with Character-Level RNNhtml
搬運只爲督促本身學習,沒有其餘目的。app
Download the data from here and extract it to the current directorydom
In short, there are a bunch of plain text files data/names/[Language].txt
with a name per line. We split lines into an array, convert Unicode to ASCII, and end up with a dictionary {language: [names ...]}
.oop
from __future__ import unicode_literals, print_function, division from io import open import glob import os import unicodedata import string all_letters = string.ascii_letters + " .,;'-" n_letters = len(all_letters) + 1 # Plus EOS marker def findFiles(path): return glob.glob(path) # Turn a Unicode string to plain ASCII, thanks to http://stackoverflow.com/a/518232/2809427 def unicodeToAscii(s): return ''.join( c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn' and c in all_letters ) # Read a file and split into lines def readLines(filename): lines = open(filename, encoding='utf-8').read().strip().split('\n') return [unicodeToAscii(line) for line in lines] # Build the category_lines dictionary, a list of lines per category category_lines = {} all_categories = [] for filename in findFiles('data/names/*.txt'): category = os.path.splitext(os.path.basename(filename))[0] all_categories.append(category) lines = readLines(filename) category_lines[category] = lines n_categories = len(all_categories) if n_categories == 0: raise RuntimeError('Data not found. Make sure that you downloaded data ' 'from https://download.pytorch.org/tutorial/data.zip and extract it to ' 'the current directory.') print('# categories:', n_categories, all_categories) print(unicodeToAscii("O'Néàl"))
The category tensor is a one-hot vector just like the letter input.學習
We will interpret the output as the probability of the next letter. When sampling, the most likely output letter is used as the next input letter.fetch
import torch import torch.nn as nn class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(RNN, self).__init__() self.hidden_size = hidden_size self.i2h = nn.Linear(n_categories + input_size + hidden_size, hidden_size) self.i2o = nn.Linear(n_categories + input_size + hidden_size, output_size) self.o2o = nn.Linear(hidden_size + output_size, output_size) self.dropout = nn.Dropout(0.1) self.softmax = nn.LogSoftmax(dim=1) def forward(self, category, input, hidden): input_combined = torch.cat((category, input, hidden), 1) hidden = self.i2h(input_combined) output = self.i2o(input_combined) output_combined = torch.cat((hidden, output), 1) output = self.o2o(output_combined) output = self.dropout(output) output = self.softmax(output) return output, hidden def initHidden(self): return torch.zeros(1, self.hidden_size)
First of all, helper functions to get random pairs of (category, line):ui
import random # Random item from a list def randomChoice(l): return l[random.randint(0, len(l) - 1)] # Get a random category and random line from that category def randomTrainingPair(): category = randomChoice(all_categories) line = randomChoice(category_lines[category]) return category, line
For each timestep (that is, for each letter in a training word) the inputs of the network will be (category, current letter, hidden state)
and the outputs will be (next letter, next hidden state)
. So for each training set, we’ll need the category, a set of input letters, and a set of output/target letters.this
The category tensor is a one-hot tensor of size <1 x n_categories>
. When training we feed it to the network at every timestep - this is a design choice, it could have been included as part of initial hidden state or some other strategy.lua
# One-hot vector for category def categoryTensor(category): li = all_categories.index(category) tensor = torch.zeros(1, n_categories) tensor[0][li] = 1 return tensor # One-hot matrix of first to last letters (not including EOS) for input def inputTensor(line): tensor = torch.zeros(len(line), 1, n_letters) for li in range(len(line)): letter = line[li] tensor[li][0][all_letters.find(letter)] = 1 return tensor # LongTensor of second letter to end (EOS) for target def targetTensor(line): letter_indexes = [all_letters.find(line[li]) for li in range(1, len(line))] letter_indexes.append(n_letters - 1) # EOS return torch.LongTensor(letter_indexes)
For convenience during training we’ll make a randomTrainingExample
function that fetches a random (category, line) pair and turns them into the required (category, input, target) tensors.spa
# Make category, input, and target tensors from a random category, line pair def randomTrainingExample(): category, line = randomTrainingPair() category_tensor = categoryTensor(category) input_line_tensor = inputTensor(line) target_line_tensor = targetTensor(line) return category_tensor, input_line_tensor, target_line_tensor
In contrast to classification, where only the last output is used, we are making a prediction at every step, so we are calculating loss at every step.
The magic of autograd allows you to simply sum these losses at each step and call backward at the end.
criterion = nn.NLLLoss() learning_rate = 0.0005 def train(category_tensor, input_line_tensor, target_line_tensor): target_line_tensor.unsqueeze_(-1) hidden = rnn.initHidden() rnn.zero_grad() loss = 0 for i in range(input_line_tensor.size(0)): output, hidden = rnn(category_tensor, input_line_tensor[i], hidden) l = criterion(output, target_line_tensor[i]) loss += l loss.backward() for p in rnn.parameters(): p.data.add_(-learning_rate, p.grad.data) return output, loss.item() / input_line_tensor.size(0)
To keep track of how long training takes I am adding a timeSince(timestamp)
function which returns a human readable string:
import time import math def timeSince(since): now = time.time() s = now - since m = math.floor(s / 60) s -= m * 60 return '%dm %ds' % (m, s)
Training is business as usual - call train a bunch of times and wait a few minutes, printing the current time and loss every print_every
examples, and keeping store of an average loss per plot_every
examples in all_losses
for plotting later.
rnn = RNN(n_letters, 128, n_letters) n_iters = 100000 print_every = 5000 plot_every = 500 all_losses = [] total_loss = 0 # Reset every plot_every iters start = time.time() for iter in range(1, n_iters + 1): output, loss = train(*randomTrainingExample()) total_loss += loss if iter % print_every == 0: print('%s (%d %d%%) %.4f' % (timeSince(start), iter, iter / n_iters * 100, loss)) if iter % plot_every == 0: all_losses.append(total_loss / plot_every) total_loss = 0
import matplotlib.pyplot as plt import matplotlib.ticker as ticker plt.figure() plt.plot(all_losses)
To sample we give the network a letter and ask what the next one is, feed that in as the next letter, and repeat until the EOS token.
output_name
with the starting letteroutput_name
and continueNote:Rather than having to give it a starting letter, another strategy would have been to include a 「start of string」 token in training and have the network choose its own starting letter.
max_length = 20 # Sample from a category and starting letter def sample(category, start_letter='A'): with torch.no_grad(): # no need to track history in sampling category_tensor = categoryTensor(category) input = inputTensor(start_letter) hidden = rnn.initHidden() output_name = start_letter for i in range(max_length): output, hidden = rnn(category_tensor, input[0], hidden) topv, topi = output.topk(1) topi = topi[0][0] if topi == n_letters - 1: break else: letter = all_letters[topi] output_name += letter input = inputTensor(letter) return output_name # Get multiple samples from one category and multiple starting letters def samples(category, start_letters='ABC'): for start_letter in start_letters: print(sample(category, start_letter)) samples('Russian', 'RUS') samples('German', 'GER') samples('Spanish', 'SPA') samples('Chinese', 'CHI')
原文地址: Classifying Names with Character-Level RNN
搬運只爲督促本身學習,沒有其餘目的。
Data is the same as the previous!
from __future__ import unicode_literals, print_function, division from io import open import glob import os def findFiles(path): return glob.glob(path) print(findFiles('data/names/*.txt')) import unicodedata import string all_letters = string.ascii_letters + " .,;'" n_letters = len(all_letters) # Turn a Unicode string to plain ASCII, thanks to http://stackoverflow.com/a/518232/2809427 def unicodeToAscii(s): return ''.join( c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn' and c in all_letters ) print(unicodeToAscii('Ślusàrski')) # Build the category_lines dictionary, a list of names per language category_lines = {} all_categories = [] # Read a file and split into lines def readLines(filename): lines = open(filename, encoding='utf-8').read().strip().split('\n') return [unicodeToAscii(line) for line in lines] for filename in findFiles('data/names/*.txt'): category = os.path.splitext(os.path.basename(filename))[0] all_categories.append(category) lines = readLines(filename) category_lines[category] = lines n_categories = len(all_categories)
Now we have category_lines
, a dictionary mapping each category (language) to a list of lines (names). We also kept track of all_categories
(just a list of languages) and n_categories
for later reference.
Now that we have all the names organized, we need to turn them into Tensors to make any use of them.
To represent a single letter, we use a 「one-hot vector」 of size <1 x n_letters>
. A one-hot vector is filled with 0s except for a 1 at index of the current letter, e.g. "b" = <0 1 0 0 0 ...>
.
To make a word we join a bunch of those into a 3D matrix <line_length x 1 x n_letters>
.
That extra 1 dimension is because PyTorch assumes everything is in batches - we’re just using a batch size of 1 here.
import torch # Find letter index from all_letters, e.g. "a" = 0 def letterToIndex(letter): return all_letters.find(letter) # Just for demonstration, turn a letter into a <1 x n_letters> Tensor def letterToTensor(letter): tensor = torch.zeros(1, n_letters) tensor[0][letterToIndex(letter)] = 1 return tensor # Turn a line into a <line_length x 1 x n_letters>, # or an array of one-hot letter vectors def lineToTensor(line): tensor = torch.zeros(len(line), 1, n_letters) for li, letter in enumerate(line): tensor[li][0][letterToIndex(letter)] = 1 return tensor print(letterToTensor('J')) print(lineToTensor('Jones').size())
import torch.nn as nn class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(RNN, self).__init__() self.hidden_size = hidden_size self.i2h = nn.Linear(input_size + hidden_size, hidden_size) self.i2o = nn.Linear(input_size + hidden_size, output_size) self.softmax = nn.LogSoftmax(dim=1) def forward(self, input, hidden): combined = torch.cat((input, hidden), 1) hidden = self.i2h(combined) output = self.i2o(combined) output = self.softmax(output) return output, hidden def initHidden(self): return torch.zeros(1, self.hidden_size) n_hidden = 128 rnn = RNN(n_letters, n_hidden, n_categories)
To run a step of this network we need to pass an input (in our case, the Tensor for the current letter) and a previous hidden state (which we initialize as zeros at first). We’ll get back the output (probability of each language) and a next hidden state (which we keep for the next step).
input = letterToTensor('A') hidden =torch.zeros(1, n_hidden) output, next_hidden = rnn(input, hidden)
For the sake of efficiency we don’t want to be creating a new Tensor for every step, so we will use lineToTensor
instead of letterToTensor
and use slices. This could be further optimized by pre-computing batches of Tensors.
input = lineToTensor('Albert') hidden = torch.zeros(1, n_hidden) output, next_hidden = rnn(input[0], hidden) print(output)
As you can see the output is a <1 x n_categories>
Tensor, where every item is the likelihood of that category (higher is more likely).
Before going into training we should make a few helper functions. The first is to interpret the output of the network, which we know to be a likelihood of each category. We can use Tensor.topk
to get the index of the greatest value:
def categoryFromOutput(output): top_n, top_i = output.topk(1) category_i = top_i[0].item() return all_categories[category_i], category_i print(categoryFromOutput(output))
A quick way to get a training example (a name and its language):
import random def randomChoice(l): return l[random.randint(0, len(l) - 1)] def randomTrainingExample(): category = randomChoice(all_categories) line = randomChoice(category_lines[category]) category_tensor = torch.tensor([all_categories.index(category)], dtype=torch.long) line_tensor = lineToTensor(line) return category, line, category_tensor, line_tensor for i in range(10): category, line, category_tensor, line_tensor = randomTrainingExample() print('category =', category, '/ line =', line)
Now all it takes to train this network is show it a bunch of examples, have it make guesses, and tell it if it’s wrong.
For the loss function nn.NLLLoss
is appropriate, since the last layer of the RNN is nn.LogSoftmax
.
Each loop of training will:
criterion = nn.NLLLoss() #Negative log likelihood loss It is useful to train a classification problem with C classes. learning_rate = 0.005 # If you set this too high, it might explode. If too low, it might not learn def train(category_tensor, line_tensor): hidden = rnn.initHidden() rnn.zero_grad() for i in range(line_tensor.size()[0]): output, hidden = rnn(line_tensor[i], hidden) loss = criterion(output, category_tensor) loss.backward() # Add parameters' gradients to their values, multiplied by learning rate for p in rnn.parameters(): p.data.add_(-learning_rate, p.grad.data) return output, loss.item()
Now we just have to run that with a bunch of examples. Since the train
function returns both the output and loss we can print its guesses and also keep track of loss for plotting. Since there are 1000s of examples we print only every print_every
examples, and take an average of the loss.
import time import math n_iters = 100000 print_every = 5000 plot_every = 1000 # Keep track of losses for plotting current_loss = 0 all_losses = [] def timeSince(since): now = time.time() s = now - since m = math.floor(s / 60) s -= m * 60 return '%dm %ds' % (m, s) start = time.time() for iter in range(1, n_iters + 1): category, line, category_tensor, line_tensor = randomTrainingExample() output, loss = train(category_tensor, line_tensor) current_loss += loss # Print iter number, loss, name and guess if iter % print_every == 0: guess, guess_i = categoryFromOutput(output) correct = '✓' if guess == category else '✗ (%s)' % category print('%d %d%% (%s) %.4f %s / %s %s' % (iter, iter / n_iters * 100, timeSince(start), loss, line, guess, correct)) # Add current loss avg to list of losses if iter % plot_every == 0: all_losses.append(current_loss / plot_every) current_loss = 0
Plotting the historical loss from all_losses
shows the network learning:
import matplotlib.pyplot as plt import matplotlib.ticker as ticker plt.figure() plt.plot(all_losses)
To see how well the network performs on different categories, we will create a confusion matrix, indicating for every actual language (rows) which language the network guesses (columns). To calculate the confusion matrix a bunch of samples are run through the network with evaluate()
, which is the same as train()
minus the backprop.
# Keep track of correct guesses in a confusion matrix confusion = torch.zeros(n_categories, n_categories) n_confusion = 10000 # Just return an output given a line def evaluate(line_tensor): hidden = rnn.initHidden() for i in range(line_tensor.size()[0]): output, hidden = rnn(line_tensor[i], hidden) return output # Go through a bunch of examples and record which are correctly guessed for i in range(n_confusion): category, line, category_tensor, line_tensor = randomTrainingExample() output = evaluate(line_tensor) guess, guess_i = categoryFromOutput(output) category_i = all_categories.index(category) confusion[category_i][guess_i] += 1 # Normalize by dividing every row by its sum for i in range(n_categories): confusion[i] = confusion[i] / confusion[i].sum() # Set up plot fig = plt.figure() ax = fig.add_subplot(111) cax = ax.matshow(confusion.numpy()) fig.colorbar(cax) # Set up axes ax.set_xticklabels([''] + all_categories, rotation=90) ax.set_yticklabels([''] + all_categories) # Force label at every tick ax.xaxis.set_major_locator(ticker.MultipleLocator(1)) ax.yaxis.set_major_locator(ticker.MultipleLocator(1)) # sphinx_gallery_thumbnail_number = 2 plt.show()
You can pick out bright spots off the main axis that show which languages it guesses incorrectly, e.g. Chinese for Korean, and Spanish for Italian. It seems to do very well with Greek, and very poorly with English (perhaps because of overlap with other languages).
def predict(input_line, n_predictions=3): print('\n> %s' % input_line) with torch.no_grad(): output = evaluate(lineToTensor(input_line)) # Get top N categories topv, topi = output.topk(n_predictions, 1, True) predictions = [] for i in range(n_predictions): value = topv[0][i].item() category_index = topi[0][i].item() print('(%.2f) %s' % (value, all_categories[category_index])) predictions.append([value, all_categories[category_index]]) predict('Dovesky') predict('Jackson') predict('Satoshi')