hadoop入門之海量Web日誌分析 用Hadoop提取KPI統計指標

轉載自:
http://blog.fens.me/hadoop-mapreduce-log-kpi/
html

今天學習了這一篇博客,寫得十分好,照着這篇博客敲了一遍。java

發現幾個問題,node

一是這篇博客中採用的hadoop版本太低,若是在hadoop2.x上面跑的話,可能會出現結果文件沒有寫入任何數據,爲了解決這個問題,我試着去參照官網http://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html的API進行操做,發現官網裏講得十分詳細,只要有一點英文基礎的同行均可以看得懂,直白簡單。hadoop2.x相比較hadoop1.x而言編寫Mapper類,能夠直接繼承import org.apache.hadoop.mapreduce.Mapper;無需再實現Mapper接口了,其中關於map方法的寫法也變了改爲以下:python

		public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
			// TODO Auto-generated method stub
			KPI kpi = KPI.filterPVS(value.toString());
			System.out.println(kpi);
			if (kpi.isValid()) {
				word.set(kpi.getIp());
				context.write(word, one);
			}
		}

hadoop1.x的寫法以下:nginx

 @Override
        public void map(Object key, Text value, OutputCollector output, Reporter reporter) throws IOException {
            KPI kpi = KPI.filterPVs(value.toString());
            if (kpi.isValid()) {
                word.set(kpi.getRequest());
                output.collect(word, one);
            }
        }

hadoop2.x的寫法就必須改變了,相應的Reducer中的reduce方法隨之改變。一開始沒有發現文中的github網址去百度了一下費了很大勁找到了一個150多M的文件,須要自取:git

連接: https://pan.baidu.com/s/1hz5dTX69Hc_l9Aj-axvfqw 提取碼: ssys 複製這段內容後打開百度網盤手機App,操做更方便哦,固然這個日誌文件內容與博客的不一致,少了兩個屬性,請自行對照代碼修改。angularjs

2、在hadoop2.x上面運行,在main方法裏配置運行參數我此次使用的hadoop2.9.2這個版本的,須要用到winuitil.exe和hadoop.dll這兩個工具。已經上傳到百度網盤上面,地址以下,連接: https://pan.baidu.com/s/1RTSeGjV2VwWxRAvsUMkkrA 提取碼: dkxt ,有三個文件分別是hadoop.2.9.2,eclipse插件,以及winutil,須要把hadoo2.6x裏面的文件所有複製到hadoop.2.9.2/bin文件夾下,其中hadoop2.6.x中的haoop.dll須要複製到c:/Windows/System32目錄下。關閉全部應用重啓計算機,在main方法中設置以下系統屬性:github

          System.setProperty("HADOOP_HOME", "E:\\hadoop\\hadoop2.6");
		System.setProperty("hadoop.home.dir", "E:\\hadoop\\hadoop-2.9.2");
		System.setProperty("HADOOP_USER_NAME", "hadoop");

設置好之後運行會報錯:Acess$0之類的錯誤:遇到這種狀況,在項目src下新建NativeIO.java文件,修改以下:web

/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.hadoop.io.nativeio;

import java.io.File;
import java.io.FileDescriptor;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.RandomAccessFile;
import java.lang.reflect.Field;
import java.nio.ByteBuffer;
import java.nio.MappedByteBuffer;
import java.nio.channels.FileChannel;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

import org.apache.hadoop.classification.InterfaceAudience;
import org.apache.hadoop.classification.InterfaceStability;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.CommonConfigurationKeys;
import org.apache.hadoop.fs.HardLink;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.SecureIOUtils.AlreadyExistsException;
import org.apache.hadoop.util.NativeCodeLoader;
import org.apache.hadoop.util.Shell;
import org.apache.hadoop.util.PerformanceAdvisory;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import sun.misc.Unsafe;

import com.google.common.annotations.VisibleForTesting;

/**
 * JNI wrappers for various native IO-related calls not available in Java.
 * These functions should generally be used alongside a fallback to another
 * more portable mechanism.
 */
@InterfaceAudience.Private
@InterfaceStability.Unstable
public class NativeIO {
  public static class POSIX {
    // Flags for open() call from bits/fcntl.h - Set by JNI
    public static int O_RDONLY = -1;
    public static int O_WRONLY = -1;
    public static int O_RDWR = -1;
    public static int O_CREAT = -1;
    public static int O_EXCL = -1;
    public static int O_NOCTTY = -1;
    public static int O_TRUNC = -1;
    public static int O_APPEND = -1;
    public static int O_NONBLOCK = -1;
    public static int O_SYNC = -1;

    // Flags for posix_fadvise() from bits/fcntl.h - Set by JNI
    /* No further special treatment.  */
    public static int POSIX_FADV_NORMAL = -1;
    /* Expect random page references.  */
    public static int POSIX_FADV_RANDOM = -1;
    /* Expect sequential page references.  */
    public static int POSIX_FADV_SEQUENTIAL = -1;
    /* Will need these pages.  */
    public static int POSIX_FADV_WILLNEED = -1;
    /* Don't need these pages.  */
    public static int POSIX_FADV_DONTNEED = -1;
    /* Data will be accessed once.  */
    public static int POSIX_FADV_NOREUSE = -1;


    // Updated by JNI when supported by glibc.  Leave defaults in case kernel
    // supports sync_file_range, but glibc does not.
    /* Wait upon writeout of all pages
       in the range before performing the
       write.  */
    public static int SYNC_FILE_RANGE_WAIT_BEFORE = 1;
    /* Initiate writeout of all those
       dirty pages in the range which are
       not presently under writeback.  */
    public static int SYNC_FILE_RANGE_WRITE = 2;
    /* Wait upon writeout of all pages in
       the range after performing the
       write.  */
    public static int SYNC_FILE_RANGE_WAIT_AFTER = 4;

    private static final Logger LOG = LoggerFactory.getLogger(NativeIO.class);

    // Set to true via JNI if possible
    public static boolean fadvisePossible = false;

    private static boolean nativeLoaded = false;
    private static boolean syncFileRangePossible = true;

    static final String WORKAROUND_NON_THREADSAFE_CALLS_KEY =
      "hadoop.workaround.non.threadsafe.getpwuid";
    static final boolean WORKAROUND_NON_THREADSAFE_CALLS_DEFAULT = true;

    private static long cacheTimeout = -1;

    private static CacheManipulator cacheManipulator = new CacheManipulator();

    public static CacheManipulator getCacheManipulator() {
      return cacheManipulator;
    }

    public static void setCacheManipulator(CacheManipulator cacheManipulator) {
      POSIX.cacheManipulator = cacheManipulator;
    }

    /**
     * Used to manipulate the operating system cache.
     */
    @VisibleForTesting
    public static class CacheManipulator {
      public void mlock(String identifier, ByteBuffer buffer,
          long len) throws IOException {
        POSIX.mlock(buffer, len);
      }

      public long getMemlockLimit() {
        return NativeIO.getMemlockLimit();
      }

      public long getOperatingSystemPageSize() {
        return NativeIO.getOperatingSystemPageSize();
      }

      public void posixFadviseIfPossible(String identifier,
        FileDescriptor fd, long offset, long len, int flags)
            throws NativeIOException {
        NativeIO.POSIX.posixFadviseIfPossible(identifier, fd, offset,
            len, flags);
      }

      public boolean verifyCanMlock() {
        return NativeIO.isAvailable();
      }
    }

    /**
     * A CacheManipulator used for testing which does not actually call mlock.
     * This allows many tests to be run even when the operating system does not
     * allow mlock, or only allows limited mlocking.
     */
    @VisibleForTesting
    public static class NoMlockCacheManipulator extends CacheManipulator {
      public void mlock(String identifier, ByteBuffer buffer,
          long len) throws IOException {
        LOG.info("mlocking " + identifier);
      }

      public long getMemlockLimit() {
        return 1125899906842624L;
      }

      public long getOperatingSystemPageSize() {
        return 4096;
      }

      public boolean verifyCanMlock() {
        return true;
      }
    }

    static {
      if (NativeCodeLoader.isNativeCodeLoaded()) {
        try {
          Configuration conf = new Configuration();
          workaroundNonThreadSafePasswdCalls = conf.getBoolean(
            WORKAROUND_NON_THREADSAFE_CALLS_KEY,
            WORKAROUND_NON_THREADSAFE_CALLS_DEFAULT);

          initNative();
          nativeLoaded = true;

          cacheTimeout = conf.getLong(
            CommonConfigurationKeys.HADOOP_SECURITY_UID_NAME_CACHE_TIMEOUT_KEY,
            CommonConfigurationKeys.HADOOP_SECURITY_UID_NAME_CACHE_TIMEOUT_DEFAULT) *
            1000;
          LOG.debug("Initialized cache for IDs to User/Group mapping with a " +
            " cache timeout of " + cacheTimeout/1000 + " seconds.");

        } catch (Throwable t) {
          // This can happen if the user has an older version of libhadoop.so
          // installed - in this case we can continue without native IO
          // after warning
          PerformanceAdvisory.LOG.debug("Unable to initialize NativeIO libraries", t);
        }
      }
    }

    /**
     * Return true if the JNI-based native IO extensions are available.
     */
    public static boolean isAvailable() {
      return NativeCodeLoader.isNativeCodeLoaded() && nativeLoaded;
    }

    private static void assertCodeLoaded() throws IOException {
      if (!isAvailable()) {
        throw new IOException("NativeIO was not loaded");
      }
    }

    /** Wrapper around open(2) */
    public static native FileDescriptor open(String path, int flags, int mode) throws IOException;
    /** Wrapper around fstat(2) */
    private static native Stat fstat(FileDescriptor fd) throws IOException;

    /** Native chmod implementation. On UNIX, it is a wrapper around chmod(2) */
    private static native void chmodImpl(String path, int mode) throws IOException;

    public static void chmod(String path, int mode) throws IOException {
      if (!Shell.WINDOWS) {
        chmodImpl(path, mode);
      } else {
        try {
          chmodImpl(path, mode);
        } catch (NativeIOException nioe) {
          if (nioe.getErrorCode() == 3) {
            throw new NativeIOException("No such file or directory",
                Errno.ENOENT);
          } else {
            LOG.warn(String.format("NativeIO.chmod error (%d): %s",
                nioe.getErrorCode(), nioe.getMessage()));
            throw new NativeIOException("Unknown error", Errno.UNKNOWN);
          }
        }
      }
    }

    /** Wrapper around posix_fadvise(2) */
    static native void posix_fadvise(
      FileDescriptor fd, long offset, long len, int flags) throws NativeIOException;

    /** Wrapper around sync_file_range(2) */
    static native void sync_file_range(
      FileDescriptor fd, long offset, long nbytes, int flags) throws NativeIOException;

    /**
     * Call posix_fadvise on the given file descriptor. See the manpage
     * for this syscall for more information. On systems where this
     * call is not available, does nothing.
     *
     * @throws NativeIOException if there is an error with the syscall
     */
    static void posixFadviseIfPossible(String identifier,
        FileDescriptor fd, long offset, long len, int flags)
        throws NativeIOException {
      if (nativeLoaded && fadvisePossible) {
        try {
          posix_fadvise(fd, offset, len, flags);
        } catch (UnsatisfiedLinkError ule) {
          fadvisePossible = false;
        }
      }
    }

    /**
     * Call sync_file_range on the given file descriptor. See the manpage
     * for this syscall for more information. On systems where this
     * call is not available, does nothing.
     *
     * @throws NativeIOException if there is an error with the syscall
     */
    public static void syncFileRangeIfPossible(
        FileDescriptor fd, long offset, long nbytes, int flags)
        throws NativeIOException {
      if (nativeLoaded && syncFileRangePossible) {
        try {
          sync_file_range(fd, offset, nbytes, flags);
        } catch (UnsupportedOperationException uoe) {
          syncFileRangePossible = false;
        } catch (UnsatisfiedLinkError ule) {
          syncFileRangePossible = false;
        }
      }
    }

    static native void mlock_native(
        ByteBuffer buffer, long len) throws NativeIOException;

    /**
     * Locks the provided direct ByteBuffer into memory, preventing it from
     * swapping out. After a buffer is locked, future accesses will not incur
     * a page fault.
     * 
     * See the mlock(2) man page for more information.
     * 
     * @throws NativeIOException
     */
    static void mlock(ByteBuffer buffer, long len)
        throws IOException {
      assertCodeLoaded();
      if (!buffer.isDirect()) {
        throw new IOException("Cannot mlock a non-direct ByteBuffer");
      }
      mlock_native(buffer, len);
    }
    
    /**
     * Unmaps the block from memory. See munmap(2).
     *
     * There isn't any portable way to unmap a memory region in Java.
     * So we use the sun.nio method here.
     * Note that unmapping a memory region could cause crashes if code
     * continues to reference the unmapped code.  However, if we don't
     * manually unmap the memory, we are dependent on the finalizer to
     * do it, and we have no idea when the finalizer will run.
     *
     * @param buffer    The buffer to unmap.
     */
    public static void munmap(MappedByteBuffer buffer) {
      if (buffer instanceof sun.nio.ch.DirectBuffer) {
        sun.misc.Cleaner cleaner =
            ((sun.nio.ch.DirectBuffer)buffer).cleaner();
        cleaner.clean();
      }
    }

    /** Linux only methods used for getOwner() implementation */
    private static native long getUIDforFDOwnerforOwner(FileDescriptor fd) throws IOException;
    private static native String getUserName(long uid) throws IOException;

    /**
     * Result type of the fstat call
     */
    public static class Stat {
      private int ownerId, groupId;
      private String owner, group;
      private int mode;

      // Mode constants - Set by JNI
      public static int S_IFMT = -1;    /* type of file */
      public static int S_IFIFO  = -1;  /* named pipe (fifo) */
      public static int S_IFCHR  = -1;  /* character special */
      public static int S_IFDIR  = -1;  /* directory */
      public static int S_IFBLK  = -1;  /* block special */
      public static int S_IFREG  = -1;  /* regular */
      public static int S_IFLNK  = -1;  /* symbolic link */
      public static int S_IFSOCK = -1;  /* socket */
      public static int S_ISUID = -1;  /* set user id on execution */
      public static int S_ISGID = -1;  /* set group id on execution */
      public static int S_ISVTX = -1;  /* save swapped text even after use */
      public static int S_IRUSR = -1;  /* read permission, owner */
      public static int S_IWUSR = -1;  /* write permission, owner */
      public static int S_IXUSR = -1;  /* execute/search permission, owner */

      Stat(int ownerId, int groupId, int mode) {
        this.ownerId = ownerId;
        this.groupId = groupId;
        this.mode = mode;
      }
      
      Stat(String owner, String group, int mode) {
        if (!Shell.WINDOWS) {
          this.owner = owner;
        } else {
          this.owner = stripDomain(owner);
        }
        if (!Shell.WINDOWS) {
          this.group = group;
        } else {
          this.group = stripDomain(group);
        }
        this.mode = mode;
      }
      
      @Override
      public String toString() {
        return "Stat(owner='" + owner + "', group='" + group + "'" +
          ", mode=" + mode + ")";
      }

      public String getOwner() {
        return owner;
      }
      public String getGroup() {
        return group;
      }
      public int getMode() {
        return mode;
      }
    }

    /**
     * Returns the file stat for a file descriptor.
     *
     * @param fd file descriptor.
     * @return the file descriptor file stat.
     * @throws IOException thrown if there was an IO error while obtaining the file stat.
     */
    public static Stat getFstat(FileDescriptor fd) throws IOException {
      Stat stat = null;
      if (!Shell.WINDOWS) {
        stat = fstat(fd); 
        stat.owner = getName(IdCache.USER, stat.ownerId);
        stat.group = getName(IdCache.GROUP, stat.groupId);
      } else {
        try {
          stat = fstat(fd);
        } catch (NativeIOException nioe) {
          if (nioe.getErrorCode() == 6) {
            throw new NativeIOException("The handle is invalid.",
                Errno.EBADF);
          } else {
            LOG.warn(String.format("NativeIO.getFstat error (%d): %s",
                nioe.getErrorCode(), nioe.getMessage()));
            throw new NativeIOException("Unknown error", Errno.UNKNOWN);
          }
        }
      }
      return stat;
    }

    private static String getName(IdCache domain, int id) throws IOException {
      Map<Integer, CachedName> idNameCache = (domain == IdCache.USER)
        ? USER_ID_NAME_CACHE : GROUP_ID_NAME_CACHE;
      String name;
      CachedName cachedName = idNameCache.get(id);
      long now = System.currentTimeMillis();
      if (cachedName != null && (cachedName.timestamp + cacheTimeout) > now) {
        name = cachedName.name;
      } else {
        name = (domain == IdCache.USER) ? getUserName(id) : getGroupName(id);
        if (LOG.isDebugEnabled()) {
          String type = (domain == IdCache.USER) ? "UserName" : "GroupName";
          LOG.debug("Got " + type + " " + name + " for ID " + id +
            " from the native implementation");
        }
        cachedName = new CachedName(name, now);
        idNameCache.put(id, cachedName);
      }
      return name;
    }

    static native String getUserName(int uid) throws IOException;
    static native String getGroupName(int uid) throws IOException;

    private static class CachedName {
      final long timestamp;
      final String name;

      public CachedName(String name, long timestamp) {
        this.name = name;
        this.timestamp = timestamp;
      }
    }

    private static final Map<Integer, CachedName> USER_ID_NAME_CACHE =
      new ConcurrentHashMap<Integer, CachedName>();

    private static final Map<Integer, CachedName> GROUP_ID_NAME_CACHE =
      new ConcurrentHashMap<Integer, CachedName>();

    private enum IdCache { USER, GROUP }

    public final static int MMAP_PROT_READ = 0x1; 
    public final static int MMAP_PROT_WRITE = 0x2; 
    public final static int MMAP_PROT_EXEC = 0x4; 

    public static native long mmap(FileDescriptor fd, int prot,
        boolean shared, long length) throws IOException;

    public static native void munmap(long addr, long length)
        throws IOException;
  }

  private static boolean workaroundNonThreadSafePasswdCalls = false;


  public static class Windows {
    // Flags for CreateFile() call on Windows
    public static final long GENERIC_READ = 0x80000000L;
    public static final long GENERIC_WRITE = 0x40000000L;

    public static final long FILE_SHARE_READ = 0x00000001L;
    public static final long FILE_SHARE_WRITE = 0x00000002L;
    public static final long FILE_SHARE_DELETE = 0x00000004L;

    public static final long CREATE_NEW = 1;
    public static final long CREATE_ALWAYS = 2;
    public static final long OPEN_EXISTING = 3;
    public static final long OPEN_ALWAYS = 4;
    public static final long TRUNCATE_EXISTING = 5;

    public static final long FILE_BEGIN = 0;
    public static final long FILE_CURRENT = 1;
    public static final long FILE_END = 2;
    
    public static final long FILE_ATTRIBUTE_NORMAL = 0x00000080L;

    /**
     * Create a directory with permissions set to the specified mode.  By setting
     * permissions at creation time, we avoid issues related to the user lacking
     * WRITE_DAC rights on subsequent chmod calls.  One example where this can
     * occur is writing to an SMB share where the user does not have Full Control
     * rights, and therefore WRITE_DAC is denied.
     *
     * @param path directory to create
     * @param mode permissions of new directory
     * @throws IOException if there is an I/O error
     */
    public static void createDirectoryWithMode(File path, int mode)
        throws IOException {
      createDirectoryWithMode0(path.getAbsolutePath(), mode);
    }

    /** Wrapper around CreateDirectory() on Windows */
    private static native void createDirectoryWithMode0(String path, int mode)
        throws NativeIOException;

    /** Wrapper around CreateFile() on Windows */
    public static native FileDescriptor createFile(String path,
        long desiredAccess, long shareMode, long creationDisposition)
        throws IOException;

    /**
     * Create a file for write with permissions set to the specified mode.  By
     * setting permissions at creation time, we avoid issues related to the user
     * lacking WRITE_DAC rights on subsequent chmod calls.  One example where
     * this can occur is writing to an SMB share where the user does not have
     * Full Control rights, and therefore WRITE_DAC is denied.
     *
     * This method mimics the semantics implemented by the JDK in
     * {@link java.io.FileOutputStream}.  The file is opened for truncate or
     * append, the sharing mode allows other readers and writers, and paths
     * longer than MAX_PATH are supported.  (See io_util_md.c in the JDK.)
     *
     * @param path file to create
     * @param append if true, then open file for append
     * @param mode permissions of new directory
     * @return FileOutputStream of opened file
     * @throws IOException if there is an I/O error
     */
    public static FileOutputStream createFileOutputStreamWithMode(File path,
        boolean append, int mode) throws IOException {
      long desiredAccess = GENERIC_WRITE;
      long shareMode = FILE_SHARE_READ | FILE_SHARE_WRITE;
      long creationDisposition = append ? OPEN_ALWAYS : CREATE_ALWAYS;
      return new FileOutputStream(createFileWithMode0(path.getAbsolutePath(),
          desiredAccess, shareMode, creationDisposition, mode));
    }

    /** Wrapper around CreateFile() with security descriptor on Windows */
    private static native FileDescriptor createFileWithMode0(String path,
        long desiredAccess, long shareMode, long creationDisposition, int mode)
        throws NativeIOException;

    /** Wrapper around SetFilePointer() on Windows */
    public static native long setFilePointer(FileDescriptor fd,
        long distanceToMove, long moveMethod) throws IOException;

    /** Windows only methods used for getOwner() implementation */
    private static native String getOwner(FileDescriptor fd) throws IOException;

    /** Supported list of Windows access right flags */
    public static enum AccessRight {
      ACCESS_READ (0x0001),      // FILE_READ_DATA
      ACCESS_WRITE (0x0002),     // FILE_WRITE_DATA
      ACCESS_EXECUTE (0x0020);   // FILE_EXECUTE

      private final int accessRight;
      AccessRight(int access) {
        accessRight = access;
      }

      public int accessRight() {
        return accessRight;
      }
    };

    /** Windows only method used to check if the current process has requested
     *  access rights on the given path. */
    private static native boolean access0(String path, int requestedAccess);

    /**
     * Checks whether the current process has desired access rights on
     * the given path.
     * 
     * Longer term this native function can be substituted with JDK7
     * function Files#isReadable, isWritable, isExecutable.
     *
     * @param path input path
     * @param desiredAccess ACCESS_READ, ACCESS_WRITE or ACCESS_EXECUTE
     * @return true if access is allowed
     * @throws IOException I/O exception on error
     */
    public static boolean access(String path, AccessRight desiredAccess)
        throws IOException {
      return true;
    }

    /**
     * Extends both the minimum and maximum working set size of the current
     * process.  This method gets the current minimum and maximum working set
     * size, adds the requested amount to each and then sets the minimum and
     * maximum working set size to the new values.  Controlling the working set
     * size of the process also controls the amount of memory it can lock.
     *
     * @param delta amount to increment minimum and maximum working set size
     * @throws IOException for any error
     * @see POSIX#mlock(ByteBuffer, long)
     */
    public static native void extendWorkingSetSize(long delta) throws IOException;

    static {
      if (NativeCodeLoader.isNativeCodeLoaded()) {
        try {
          initNative();
          nativeLoaded = true;
        } catch (Throwable t) {
          // This can happen if the user has an older version of libhadoop.so
          // installed - in this case we can continue without native IO
          // after warning
          PerformanceAdvisory.LOG.debug("Unable to initialize NativeIO libraries", t);
        }
      }
    }
  }

  private static final Logger LOG = LoggerFactory.getLogger(NativeIO.class);

  private static boolean nativeLoaded = false;

  static {
    if (NativeCodeLoader.isNativeCodeLoaded()) {
      try {
        initNative();
        nativeLoaded = true;
      } catch (Throwable t) {
        // This can happen if the user has an older version of libhadoop.so
        // installed - in this case we can continue without native IO
        // after warning
        PerformanceAdvisory.LOG.debug("Unable to initialize NativeIO libraries", t);
      }
    }
  }

  /**
   * Return true if the JNI-based native IO extensions are available.
   */
  public static boolean isAvailable() {
    return NativeCodeLoader.isNativeCodeLoaded() && nativeLoaded;
  }

  /** Initialize the JNI method ID and class ID cache */
  private static native void initNative();

  /**
   * Get the maximum number of bytes that can be locked into memory at any
   * given point.
   *
   * @return 0 if no bytes can be locked into memory;
   *         Long.MAX_VALUE if there is no limit;
   *         The number of bytes that can be locked into memory otherwise.
   */
  static long getMemlockLimit() {
    return isAvailable() ? getMemlockLimit0() : 0;
  }

  private static native long getMemlockLimit0();
  
  /**
   * @return the operating system's page size.
   */
  static long getOperatingSystemPageSize() {
    try {
      Field f = Unsafe.class.getDeclaredField("theUnsafe");
      f.setAccessible(true);
      Unsafe unsafe = (Unsafe)f.get(null);
      return unsafe.pageSize();
    } catch (Throwable e) {
      LOG.warn("Unable to get operating system page size.  Guessing 4096.", e);
      return 4096;
    }
  }

  private static class CachedUid {
    final long timestamp;
    final String username;
    public CachedUid(String username, long timestamp) {
      this.timestamp = timestamp;
      this.username = username;
    }
  }
  private static final Map<Long, CachedUid> uidCache =
      new ConcurrentHashMap<Long, CachedUid>();
  private static long cacheTimeout;
  private static boolean initialized = false;
  
  /**
   * The Windows logon name has two part, NetBIOS domain name and
   * user account name, of the format DOMAIN\UserName. This method
   * will remove the domain part of the full logon name.
   *
   * @param Fthe full principal name containing the domain
   * @return name with domain removed
   */
  private static String stripDomain(String name) {
    int i = name.indexOf('\\');
    if (i != -1)
      name = name.substring(i + 1);
    return name;
  }

  public static String getOwner(FileDescriptor fd) throws IOException {
    ensureInitialized();
    if (Shell.WINDOWS) {
      String owner = Windows.getOwner(fd);
      owner = stripDomain(owner);
      return owner;
    } else {
      long uid = POSIX.getUIDforFDOwnerforOwner(fd);
      CachedUid cUid = uidCache.get(uid);
      long now = System.currentTimeMillis();
      if (cUid != null && (cUid.timestamp + cacheTimeout) > now) {
        return cUid.username;
      }
      String user = POSIX.getUserName(uid);
      LOG.info("Got UserName " + user + " for UID " + uid
          + " from the native implementation");
      cUid = new CachedUid(user, now);
      uidCache.put(uid, cUid);
      return user;
    }
  }

  /**
   * Create a FileDescriptor that shares delete permission on the
   * file opened at a given offset, i.e. other process can delete
   * the file the FileDescriptor is reading. Only Windows implementation
   * uses the native interface.
   */
  public static FileDescriptor getShareDeleteFileDescriptor(
      File f, long seekOffset) throws IOException {
    if (!Shell.WINDOWS) {
      RandomAccessFile rf = new RandomAccessFile(f, "r");
      if (seekOffset > 0) {
        rf.seek(seekOffset);
      }
      return rf.getFD();
    } else {
      // Use Windows native interface to create a FileDescriptor that
      // shares delete permission on the file opened, and set it to the
      // given offset.
      //
      FileDescriptor fd = NativeIO.Windows.createFile(
          f.getAbsolutePath(),
          NativeIO.Windows.GENERIC_READ,
          NativeIO.Windows.FILE_SHARE_READ |
              NativeIO.Windows.FILE_SHARE_WRITE |
              NativeIO.Windows.FILE_SHARE_DELETE,
          NativeIO.Windows.OPEN_EXISTING);
      if (seekOffset > 0)
        NativeIO.Windows.setFilePointer(fd, seekOffset, NativeIO.Windows.FILE_BEGIN);
      return fd;
    }
  }

  /**
   * Create the specified File for write access, ensuring that it does not exist.
   * @param f the file that we want to create
   * @param permissions we want to have on the file (if security is enabled)
   *
   * @throws AlreadyExistsException if the file already exists
   * @throws IOException if any other error occurred
   */
  public static FileOutputStream getCreateForWriteFileOutputStream(File f, int permissions)
      throws IOException {
    if (!Shell.WINDOWS) {
      // Use the native wrapper around open(2)
      try {
        FileDescriptor fd = NativeIO.POSIX.open(f.getAbsolutePath(),
            NativeIO.POSIX.O_WRONLY | NativeIO.POSIX.O_CREAT
                | NativeIO.POSIX.O_EXCL, permissions);
        return new FileOutputStream(fd);
      } catch (NativeIOException nioe) {
        if (nioe.getErrno() == Errno.EEXIST) {
          throw new AlreadyExistsException(nioe);
        }
        throw nioe;
      }
    } else {
      // Use the Windows native APIs to create equivalent FileOutputStream
      try {
        FileDescriptor fd = NativeIO.Windows.createFile(f.getCanonicalPath(),
            NativeIO.Windows.GENERIC_WRITE,
            NativeIO.Windows.FILE_SHARE_DELETE
                | NativeIO.Windows.FILE_SHARE_READ
                | NativeIO.Windows.FILE_SHARE_WRITE,
            NativeIO.Windows.CREATE_NEW);
        NativeIO.POSIX.chmod(f.getCanonicalPath(), permissions);
        return new FileOutputStream(fd);
      } catch (NativeIOException nioe) {
        if (nioe.getErrorCode() == 80) {
          // ERROR_FILE_EXISTS
          // 80 (0x50)
          // The file exists
          throw new AlreadyExistsException(nioe);
        }
        throw nioe;
      }
    }
  }

  private synchronized static void ensureInitialized() {
    if (!initialized) {
      cacheTimeout =
          new Configuration().getLong("hadoop.security.uid.cache.secs",
              4*60*60) * 1000;
      LOG.info("Initialized cache for UID to User mapping with a cache" +
          " timeout of " + cacheTimeout/1000 + " seconds.");
      initialized = true;
    }
  }
  
  /**
   * A version of renameTo that throws a descriptive exception when it fails.
   *
   * @param src                  The source path
   * @param dst                  The destination path
   * 
   * @throws NativeIOException   On failure.
   */
  public static void renameTo(File src, File dst)
      throws IOException {
    if (!nativeLoaded) {
      if (!src.renameTo(dst)) {
        throw new IOException("renameTo(src=" + src + ", dst=" +
          dst + ") failed.");
      }
    } else {
      renameTo0(src.getAbsolutePath(), dst.getAbsolutePath());
    }
  }

  /**
   * Creates a hardlink "dst" that points to "src".
   *
   * This is deprecated since JDK7 NIO can create hardlinks via the
   * {@link java.nio.file.Files} API.
   *
   * @param src source file
   * @param dst hardlink location
   * @throws IOException
   */
  @Deprecated
  public static void link(File src, File dst) throws IOException {
    if (!nativeLoaded) {
      HardLink.createHardLink(src, dst);
    } else {
      link0(src.getAbsolutePath(), dst.getAbsolutePath());
    }
  }

  /**
   * A version of renameTo that throws a descriptive exception when it fails.
   *
   * @param src                  The source path
   * @param dst                  The destination path
   * 
   * @throws NativeIOException   On failure.
   */
  private static native void renameTo0(String src, String dst)
      throws NativeIOException;

  private static native void link0(String src, String dst)
      throws NativeIOException;

  /**
   * Unbuffered file copy from src to dst without tainting OS buffer cache
   *
   * In POSIX platform:
   * It uses FileChannel#transferTo() which internally attempts
   * unbuffered IO on OS with native sendfile64() support and falls back to
   * buffered IO otherwise.
   *
   * It minimizes the number of FileChannel#transferTo call by passing the the
   * src file size directly instead of a smaller size as the 3rd parameter.
   * This saves the number of sendfile64() system call when native sendfile64()
   * is supported. In the two fall back cases where sendfile is not supported,
   * FileChannle#transferTo already has its own batching of size 8 MB and 8 KB,
   * respectively.
   *
   * In Windows Platform:
   * It uses its own native wrapper of CopyFileEx with COPY_FILE_NO_BUFFERING
   * flag, which is supported on Windows Server 2008 and above.
   *
   * Ideally, we should use FileChannel#transferTo() across both POSIX and Windows
   * platform. Unfortunately, the wrapper(Java_sun_nio_ch_FileChannelImpl_transferTo0)
   * used by FileChannel#transferTo for unbuffered IO is not implemented on Windows.
   * Based on OpenJDK 6/7/8 source code, Java_sun_nio_ch_FileChannelImpl_transferTo0
   * on Windows simply returns IOS_UNSUPPORTED.
   *
   * Note: This simple native wrapper does minimal parameter checking before copy and
   * consistency check (e.g., size) after copy.
   * It is recommended to use wrapper function like
   * the Storage#nativeCopyFileUnbuffered() function in hadoop-hdfs with pre/post copy
   * checks.
   *
   * @param src                  The source path
   * @param dst                  The destination path
   * @throws IOException
   */
  public static void copyFileUnbuffered(File src, File dst) throws IOException {
    if (nativeLoaded && Shell.WINDOWS) {
      copyFileUnbuffered0(src.getAbsolutePath(), dst.getAbsolutePath());
    } else {
      FileInputStream fis = new FileInputStream(src);
      FileChannel input = null;
      try {
        input = fis.getChannel();
        try (FileOutputStream fos = new FileOutputStream(dst);
             FileChannel output = fos.getChannel()) {
          long remaining = input.size();
          long position = 0;
          long transferred = 0;
          while (remaining > 0) {
            transferred = input.transferTo(position, remaining, output);
            remaining -= transferred;
            position += transferred;
          }
        }
      } finally {
        IOUtils.cleanupWithLogger(LOG, input, fis);
      }
    }
  }

  private static native void copyFileUnbuffered0(String src, String dst)
      throws NativeIOException;
}

  3、關於這個使用maven構建的項目,我在運行時由於使用公司內網,速度很慢,因此改變策略。建立java項目,而後把hadoop2.9.2裏面的share目錄下的common、hdfs、httpfs、yarn、mapreduce目錄下的jar文件都拷了進來,運行中出了很多bug。算法

hadoop-hdfs-2.9.2.jar
hadoop-hdfs-client-2.9.2.jar
hadoop-mapreduce-client-app-2.9.2.jar
hadoop-mapreduce-client-common-2.9.2.jar
hadoop-mapreduce-client-core-2.9.2.jar
hadoop-mapreduce-client-hs-2.9.2.jar
hadoop-mapreduce-client-jobclient-2.9.2-tests.jar
hadoop-mapreduce-client-shuffle-2.9.2.jar
hadoop-yarn-api-2.9.2.jar
hadoop-yarn-applications-distributedshell-2.9.2.jar
hadoop-yarn-applications-unmanaged-am-launcher-2.9.2.jar
hadoop-yarn-client-2.9.2.jar
activation-1.1.jar
aopalliance-1.0.jar
apacheds-i18n-2.0.0-M15.jar
apacheds-kerberos-codec-2.0.0-M15.jar
api-asn1-api-1.0.0-M20.jar
api-util-1.0.0-M20.jar
asm-3.2.jar
avro-1.7.7.jar
commons-beanutils-1.7.0.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.4.jar
commons-collections-3.2.2.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar
commons-digester-1.8.jar
commons-io-2.4.jar
commons-lang-2.6.jar
commons-lang3-3.4.jar
commons-logging-1.1.3.jar
commons-math3-3.1.1.jar
commons-net-3.1.jar
curator-client-2.7.1.jar
curator-framework-2.7.1.jar
curator-recipes-2.7.1.jar
ehcache-3.3.1.jar
fst-2.50.jar
geronimo-jcache_1.0_spec-1.0-alpha-1.jar
gson-2.2.4.jar
guava-11.0.2.jar
guice-3.0.jar
guice-servlet-3.0.jar
HikariCP-java7-2.4.12.jar
htrace-core4-4.1.0-incubating.jar
httpclient-4.5.2.jar
httpcore-4.4.4.jar
jackson-core-asl-1.9.13.jar
jackson-jaxrs-1.9.13.jar
jackson-mapper-asl-1.9.13.jar
jackson-xc-1.9.13.jar
java-util-1.9.0.jar
java-xmlbuilder-0.4.jar
javax.inject-1.jar
jaxb-api-2.2.2.jar
jaxb-impl-2.2.3-1.jar
jcip-annotations-1.0-1.jar
jersey-client-1.9.jar
jersey-core-1.9.jar
jersey-guice-1.9.jar
jersey-json-1.9.jar
jersey-server-1.9.jar
jets3t-0.9.0.jar
jettison-1.1.jar
jetty-6.1.26.jar
jetty-sslengine-6.1.26.jar
jetty-util-6.1.26.jar
jsch-0.1.54.jar
json-io-2.5.1.jar
json-smart-1.3.1.jar
jsp-api-2.1.jar
jsr305-3.0.0.jar
leveldbjni-all-1.8.jar
log4j-1.2.17.jar
metrics-core-3.0.1.jar
mssql-jdbc-6.2.1.jre7.jar
netty-3.6.2.Final.jar
nimbus-jose-jwt-4.41.1.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
servlet-api-2.5.jar
snappy-java-1.0.5.jar
stax-api-1.0-2.jar
stax2-api-3.1.4.jar
woodstox-core-5.0.3.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.6.jar
hadoop-common-2.9.2.jar
slf4j-api-1.7.25.jar
slf4j-log4j12-1.7.25.jar
hadoop-yarn-server-nodemanager-2.9.2.jar
hadoop-yarn-server-resourcemanager-2.9.2.jar
hadoop-yarn-server-router-2.9.2.jar
hadoop-yarn-server-sharedcachemanager-2.9.2.jar
hadoop-yarn-server-timeline-pluginstorage-2.9.2.jar
hadoop-yarn-server-web-proxy-2.9.2.jar
hadoop-yarn-ui-2.9.2.war
hadoop-annotations-2.9.2.jar
hadoop-auth-2.9.2.jar
hadoop-nfs-2.9.2.jar
hamcrest-core-1.3.jar
junit-4.11.jar
hadoop-mapreduce-client-jobclient-2.9.2.jar
mockito-all-1.8.5.jar
ojdbc7.jar
orai18n.jar
hadoop-yarn-common-2.9.2.jar
hadoop-yarn-registry-2.9.2.jar
hadoop-yarn-server-applicationhistoryservice-2.9.2.jar
hadoop-yarn-server-common-2.9.2.jar

前言

Web日誌包含着網站最重要的信息,經過日誌分析,咱們能夠知道網站的訪問量,哪一個網頁訪問人數最多,哪一個網頁最有價值等。通常中型的網站(10W的PV以上),天天會產生1G以上Web日誌文件。大型或超大型的網站,可能每小時就會產生10G的數據量。

對於日誌的這種規模的數據,用Hadoop進行日誌分析,是最適合不過的了。

目錄

  1. Web日誌分析概述
  2. 需求分析:KPI指標設計
  3. 算法模型:Hadoop並行算法
  4. 架構設計:日誌KPI系統架構
  5. 程序開發1:用Maven構建Hadoop項目
  6. 程序開發2:MapReduce程序實現

1. Web日誌分析概述

Web日誌由Web服務器產生,多是Nginx, Apache, Tomcat等。從Web日誌中,咱們能夠獲取網站每類頁面的PV值(PageView,頁面訪問量)、獨立IP數;稍微複雜一些的,能夠計算得出用戶所檢索的關鍵詞排行榜、用戶停留時間最高的頁面等;更復雜的,構建廣告點擊模型、分析用戶行爲特徵等等。

在Web日誌中,每條日誌一般表明着用戶的一次訪問行爲,例以下面就是一條nginx日誌:

222.68.172.190 - - [18/Sep/2013:06:49:57 +0000] "GET /images/my.jpg HTTP/1.1" 200 19939
 "http://www.angularjs.cn/A00n" "Mozilla/5.0 (Windows NT 6.1)
 AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36"

拆解爲如下8個變量

  • remote_addr: 記錄客戶端的ip地址, 222.68.172.190
  • remote_user: 記錄客戶端用戶名稱, –
  • time_local: 記錄訪問時間與時區, [18/Sep/2013:06:49:57 +0000]
  • request: 記錄請求的url與http協議, 「GET /images/my.jpg HTTP/1.1」
  • status: 記錄請求狀態,成功是200, 200
  • body_bytes_sent: 記錄發送給客戶端文件主體內容大小, 19939
  • http_referer: 用來記錄從那個頁面連接訪問過來的, 「http://www.angularjs.cn/A00n」
  • http_user_agent: 記錄客戶瀏覽器的相關信息, 「Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36」

注:要更多的信息,則要用其它手段去獲取,經過js代碼單獨發送請求,使用cookies記錄用戶的訪問信息。

利用這些日誌信息,咱們能夠深刻挖掘網站的祕密了。

少許數據的狀況

少許數據的狀況(10Mb,100Mb,10G),在單機處理尚能忍受的時候,我能夠直接利用各類Unix/Linux工具,awk、grep、sort、join等都是日誌分析的利器,再配合perl, python,正則表達工,基本就能夠解決全部的問題。

例如,咱們想從上面提到的nginx日誌中獲得訪問量最高前10個IP,實現很簡單:

~ cat access.log.10 | awk '{a[$1]++} END {for(b in a) print b"\t"a[b]}' | sort -k2 -r | head -n 10
163.177.71.12   972
101.226.68.137  972
183.195.232.138 971
50.116.27.194   97
14.17.29.86     96
61.135.216.104  94
61.135.216.105  91
61.186.190.41   9
59.39.192.108   9
220.181.51.212  9

海量數據的狀況

當數據量天天以10G、100G增加的時候,單機處理能力已經不能知足需求。咱們就須要增長系統的複雜性,用計算機集羣,存儲陣列來解決。在Hadoop出現以前,海量數據存儲,和海量日誌分析都是很是困難的。只有少數一些公司,掌握着高效的並行計算,分步式計算,分步式存儲的核心技術。

Hadoop的出現,大幅度的下降了海量數據處理的門檻,讓小公司甚至是我的都能力,搞定海量數據。而且,Hadoop很是適用於日誌分析系統。

2.需求分析:KPI指標設計

下面咱們將從一個公司案例出發來全面的解釋,如何用進行海量Web日誌分析,提取KPI數據

案例介紹
某電子商務網站,在線團購業務。每日PV數100w,獨立IP數5w。用戶一般在工做日上午10:00-12:00和下午15:00-18:00訪問量最大。日間主要是經過PC端瀏覽器訪問,休息日及夜間經過移動設備訪問較多。網站搜索瀏量佔整個網站的80%,PC用戶不足1%的用戶會消費,移動用戶有5%會消費。

經過簡短的描述,咱們能夠粗略地看出,這家電商網站的經營情況,並認識到願意消費的用戶從哪裏來,有哪些潛在的用戶能夠挖掘,網站是否存在倒閉風險等。

KPI指標設計

  • PV(PageView): 頁面訪問量統計
  • IP: 頁面獨立IP的訪問量統計
  • Time: 用戶每小時PV的統計
  • Source: 用戶來源域名的統計
  • Browser: 用戶的訪問設備統計

注:商業保密限制,沒法提供電商網站的日誌。
下面的內容,將以個人我的網站爲例提取數據進行分析。

百度統計,對我我的網站作的統計!http://www.fens.me

基本統計指標:
hadoop-kpi-baidu

用戶的訪問設備統計指標:
hadoop-kpi-baidu2

從商業的角度,我的網站的特徵與電商網站不太同樣,沒有轉化率,同時跳出率也比較高。從技術的角度,一樣都關注KPI指標設計。

3.算法模型:Hadoop並行算法

hadoop-kpi-log

並行算法的設計:
注:找到第一節有定義的8個變量

PV(PageView): 頁面訪問量統計

  • Map過程{key:$request,value:1}
  • Reduce過程{key:$request,value:求和(sum)}

IP: 頁面獨立IP的訪問量統計

  • Map: {key:$request,value:$remote_addr}
  • Reduce: {key:$request,value:去重再求和(sum(unique))}

Time: 用戶每小時PV的統計

  • Map: {key:$time_local,value:1}
  • Reduce: {key:$time_local,value:求和(sum)}

Source: 用戶來源域名的統計

  • Map: {key:$http_referer,value:1}
  • Reduce: {key:$http_referer,value:求和(sum)}

Browser: 用戶的訪問設備統計

  • Map: {key:$http_user_agent,value:1}
  • Reduce: {key:$http_user_agent,value:求和(sum)}

4.架構設計:日誌KPI系統架構

hadoop-kpi-architect

上圖中,左邊是Application業務系統,右邊是Hadoop的HDFS, MapReduce。

  1. 日誌是由業務系統產生的,咱們能夠設置web服務器天天產生一個新的目錄,目錄下面會產生多個日誌文件,每一個日誌文件64M。
  2. 設置系統定時器CRON,夜間在0點後,向HDFS導入昨天的日誌文件。
  3. 完成導入後,設置系統定時器,啓動MapReduce程序,提取並計算統計指標。
  4. 完成計算後,設置系統定時器,從HDFS導出統計指標數據到數據庫,方便之後的即便查詢。

hadoop-kpi-process

上面這幅圖,咱們能夠看得更清楚,數據是如何流動的。藍色背景的部分是在Hadoop中的,接下來咱們的任務就是完成MapReduce的程序實現。

5.程序開發1:用Maven構建Hadoop項目

請參考文章:用Maven構建Hadoop項目

win7的開發環境 和 Hadoop的運行環境 ,在上面文章中已經介紹過了。

咱們須要放日誌文件,上傳的HDFS裏/user/hdfs/log_kpi/目錄,參考下面的命令操做

~ hadoop fs -mkdir /user/hdfs/log_kpi
~ hadoop fs -copyFromLocal /home/conan/datafiles/access.log.10 /user/hdfs/log_kpi/

我已經把整個MapReduce的實現都放到了github上面:

https://github.com/bsspirit/maven_hadoop_template/releases/tag/kpi_v1

6.程序開發2:MapReduce程序實現

開發流程:

  1. 對日誌行的解析
  2. Map函數實現
  3. Reduce函數實現
  4. 啓動程序實現

1). 對日誌行的解析
新建文件:org.conan.myhadoop.mr.kpi.KPI.java

package org.conan.myhadoop.mr.kpi;

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Locale;

/*
 * KPI Object
 */
public class KPI {
    private String remote_addr;// 記錄客戶端的ip地址
    private String remote_user;// 記錄客戶端用戶名稱,忽略屬性"-"
    private String time_local;// 記錄訪問時間與時區
    private String request;// 記錄請求的url與http協議
    private String status;// 記錄請求狀態;成功是200
    private String body_bytes_sent;// 記錄發送給客戶端文件主體內容大小
    private String http_referer;// 用來記錄從那個頁面連接訪問過來的
    private String http_user_agent;// 記錄客戶瀏覽器的相關信息

    private boolean valid = true;// 判斷數據是否合法
    
    @Override
    public String toString() {
        StringBuilder sb = new StringBuilder();
        sb.append("valid:" + this.valid);
        sb.append("\nremote_addr:" + this.remote_addr);
        sb.append("\nremote_user:" + this.remote_user);
        sb.append("\ntime_local:" + this.time_local);
        sb.append("\nrequest:" + this.request);
        sb.append("\nstatus:" + this.status);
        sb.append("\nbody_bytes_sent:" + this.body_bytes_sent);
        sb.append("\nhttp_referer:" + this.http_referer);
        sb.append("\nhttp_user_agent:" + this.http_user_agent);
        return sb.toString();
    }

    public String getRemote_addr() {
        return remote_addr;
    }

    public void setRemote_addr(String remote_addr) {
        this.remote_addr = remote_addr;
    }

    public String getRemote_user() {
        return remote_user;
    }

    public void setRemote_user(String remote_user) {
        this.remote_user = remote_user;
    }

    public String getTime_local() {
        return time_local;
    }

    public Date getTime_local_Date() throws ParseException {
        SimpleDateFormat df = new SimpleDateFormat("dd/MMM/yyyy:HH:mm:ss", Locale.US);
        return df.parse(this.time_local);
    }
    
    public String getTime_local_Date_hour() throws ParseException{
        SimpleDateFormat df = new SimpleDateFormat("yyyyMMddHH");
        return df.format(this.getTime_local_Date());
    }

    public void setTime_local(String time_local) {
        this.time_local = time_local;
    }

    public String getRequest() {
        return request;
    }

    public void setRequest(String request) {
        this.request = request;
    }

    public String getStatus() {
        return status;
    }

    public void setStatus(String status) {
        this.status = status;
    }

    public String getBody_bytes_sent() {
        return body_bytes_sent;
    }

    public void setBody_bytes_sent(String body_bytes_sent) {
        this.body_bytes_sent = body_bytes_sent;
    }

    public String getHttp_referer() {
        return http_referer;
    }
    
    public String getHttp_referer_domain(){
        if(http_referer.length()<8){ 
            return http_referer;
        }
        
        String str=this.http_referer.replace("\"", "").replace("http://", "").replace("https://", "");
        return str.indexOf("/")>0?str.substring(0, str.indexOf("/")):str;
    }

    public void setHttp_referer(String http_referer) {
        this.http_referer = http_referer;
    }

    public String getHttp_user_agent() {
        return http_user_agent;
    }

    public void setHttp_user_agent(String http_user_agent) {
        this.http_user_agent = http_user_agent;
    }

    public boolean isValid() {
        return valid;
    }

    public void setValid(boolean valid) {
        this.valid = valid;
    }

    public static void main(String args[]) {
        String line = "222.68.172.190 - - [18/Sep/2013:06:49:57 +0000] \"GET /images/my.jpg HTTP/1.1\" 200 19939 \"http://www.angularjs.cn/A00n\" \"Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36\"";
        System.out.println(line);
        KPI kpi = new KPI();
        String[] arr = line.split(" ");

        kpi.setRemote_addr(arr[0]);
        kpi.setRemote_user(arr[1]);
        kpi.setTime_local(arr[3].substring(1));
        kpi.setRequest(arr[6]);
        kpi.setStatus(arr[8]);
        kpi.setBody_bytes_sent(arr[9]);
        kpi.setHttp_referer(arr[10]);
        kpi.setHttp_user_agent(arr[11] + " " + arr[12]);
        System.out.println(kpi);

        try {
            SimpleDateFormat df = new SimpleDateFormat("yyyy.MM.dd:HH:mm:ss", Locale.US);
            System.out.println(df.format(kpi.getTime_local_Date()));
            System.out.println(kpi.getTime_local_Date_hour());
            System.out.println(kpi.getHttp_referer_domain());
        } catch (ParseException e) {
            e.printStackTrace();
        }
    }

}

從日誌文件中,取一行經過main函數寫一個簡單的解析測試。

控制檯輸出:

222.68.172.190 - - [18/Sep/2013:06:49:57 +0000] "GET /images/my.jpg HTTP/1.1" 200 19939 "http://www.angularjs.cn/A00n" "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36"
valid:true
remote_addr:222.68.172.190
remote_user:-
time_local:18/Sep/2013:06:49:57
request:/images/my.jpg
status:200
body_bytes_sent:19939
http_referer:"http://www.angularjs.cn/A00n"
http_user_agent:"Mozilla/5.0 (Windows
2013.09.18:06:49:57
2013091806
www.angularjs.cn

咱們看到日誌行,被正確的解析成了kpi對象的屬性。咱們把解析過程,單獨封裝成一個方法。

private static KPI parser(String line) {
        System.out.println(line);
        KPI kpi = new KPI();
        String[] arr = line.split(" ");
        if (arr.length > 11) {
            kpi.setRemote_addr(arr[0]);
            kpi.setRemote_user(arr[1]);
            kpi.setTime_local(arr[3].substring(1));
            kpi.setRequest(arr[6]);
            kpi.setStatus(arr[8]);
            kpi.setBody_bytes_sent(arr[9]);
            kpi.setHttp_referer(arr[10]);
            
            if (arr.length > 12) {
                kpi.setHttp_user_agent(arr[11] + " " + arr[12]);
            } else {
                kpi.setHttp_user_agent(arr[11]);
            }

            if (Integer.parseInt(kpi.getStatus()) >= 400) {// 大於400,HTTP錯誤
                kpi.setValid(false);
            }
        } else {
            kpi.setValid(false);
        }
        return kpi;
    }

對map方法,reduce方法,啓動方法,咱們單獨寫一個類來實現

下面將分別介紹MapReduce的實現類:

  • PV:org.conan.myhadoop.mr.kpi.KPIPV.java
  • IP: org.conan.myhadoop.mr.kpi.KPIIP.java
  • Time: org.conan.myhadoop.mr.kpi.KPITime.java
  • Browser: org.conan.myhadoop.mr.kpi.KPIBrowser.java

1). PV:org.conan.myhadoop.mr.kpi.KPIPV.java

package org.conan.myhadoop.mr.kpi;

import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;

public class KPIPV { 

    public static class KPIPVMapper extends MapReduceBase implements Mapper<object, text,="" intwritable=""> {
        private IntWritable one = new IntWritable(1);
        private Text word = new Text();

        @Override
        public void map(Object key, Text value, OutputCollector<text, intwritable=""> output, Reporter reporter) throws IOException {
            KPI kpi = KPI.filterPVs(value.toString());
            if (kpi.isValid()) {
                word.set(kpi.getRequest());
                output.collect(word, one);
            }
        }
    }

    public static class KPIPVReducer extends MapReduceBase implements Reducer<text, intwritable,="" text,="" intwritable=""> {
        private IntWritable result = new IntWritable();

        @Override
        public void reduce(Text key, Iterator values, OutputCollector<text, intwritable=""> output, Reporter reporter) throws IOException {
            int sum = 0;
            while (values.hasNext()) {
                sum += values.next().get();
            }
            result.set(sum);
            output.collect(key, result);
        }
    }

    public static void main(String[] args) throws Exception {
        String input = "hdfs://192.168.1.210:9000/user/hdfs/log_kpi/";
        String output = "hdfs://192.168.1.210:9000/user/hdfs/log_kpi/pv";

        JobConf conf = new JobConf(KPIPV.class);
        conf.setJobName("KPIPV");
        conf.addResource("classpath:/hadoop/core-site.xml");
        conf.addResource("classpath:/hadoop/hdfs-site.xml");
        conf.addResource("classpath:/hadoop/mapred-site.xml");

        conf.setMapOutputKeyClass(Text.class);
        conf.setMapOutputValueClass(IntWritable.class);

        conf.setOutputKeyClass(Text.class);
        conf.setOutputValueClass(IntWritable.class);

        conf.setMapperClass(KPIPVMapper.class);
        conf.setCombinerClass(KPIPVReducer.class);
        conf.setReducerClass(KPIPVReducer.class);

        conf.setInputFormat(TextInputFormat.class);
        conf.setOutputFormat(TextOutputFormat.class);

        FileInputFormat.setInputPaths(conf, new Path(input));
        FileOutputFormat.setOutputPath(conf, new Path(output));

        JobClient.runJob(conf);
        System.exit(0);
    }
}

在程序中會調用KPI類的方法

KPI kpi = KPI.filterPVs(value.toString());

經過filterPVs方法,咱們能夠實現對PV,更多的控制。

在KPK.java中,增長filterPVs方法

/**
     * 按page的pv分類
     */
    public static KPI filterPVs(String line) {
        KPI kpi = parser(line);
        Set pages = new HashSet();
        pages.add("/about");
        pages.add("/black-ip-list/");
        pages.add("/cassandra-clustor/");
        pages.add("/finance-rhive-repurchase/");
        pages.add("/hadoop-family-roadmap/");
        pages.add("/hadoop-hive-intro/");
        pages.add("/hadoop-zookeeper-intro/");
        pages.add("/hadoop-mahout-roadmap/");

        if (!pages.contains(kpi.getRequest())) {
            kpi.setValid(false);
        }
        return kpi;
    }

在filterPVs方法,咱們定義了一個pages的過濾,就是隻對這個頁面進行PV統計。

咱們運行一下KPIPV.java

2013-10-9 11:53:28 org.apache.hadoop.mapred.MapTask$MapOutputBuffer flush
信息: Starting flush of map output
2013-10-9 11:53:28 org.apache.hadoop.mapred.MapTask$MapOutputBuffer sortAndSpill
信息: Finished spill 0
2013-10-9 11:53:28 org.apache.hadoop.mapred.Task done
信息: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting
2013-10-9 11:53:30 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息: hdfs://192.168.1.210:9000/user/hdfs/log_kpi/access.log.10:0+3025757
2013-10-9 11:53:30 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息: hdfs://192.168.1.210:9000/user/hdfs/log_kpi/access.log.10:0+3025757
2013-10-9 11:53:30 org.apache.hadoop.mapred.Task sendDone
信息: Task 'attempt_local_0001_m_000000_0' done.
2013-10-9 11:53:30 org.apache.hadoop.mapred.Task initialize
信息:  Using ResourceCalculatorPlugin : null
2013-10-9 11:53:30 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息: 
2013-10-9 11:53:30 org.apache.hadoop.mapred.Merger$MergeQueue merge
信息: Merging 1 sorted segments
2013-10-9 11:53:30 org.apache.hadoop.mapred.Merger$MergeQueue merge
信息: Down to the last merge-pass, with 1 segments left of total size: 213 bytes
2013-10-9 11:53:30 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息: 
2013-10-9 11:53:30 org.apache.hadoop.mapred.Task done
信息: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting
2013-10-9 11:53:30 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息: 
2013-10-9 11:53:30 org.apache.hadoop.mapred.Task commit
信息: Task attempt_local_0001_r_000000_0 is allowed to commit now
2013-10-9 11:53:30 org.apache.hadoop.mapred.FileOutputCommitter commitTask
信息: Saved output of task 'attempt_local_0001_r_000000_0' to hdfs://192.168.1.210:9000/user/hdfs/log_kpi/pv
2013-10-9 11:53:31 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
信息:  map 100% reduce 0%
2013-10-9 11:53:33 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息: reduce > reduce
2013-10-9 11:53:33 org.apache.hadoop.mapred.Task sendDone
信息: Task 'attempt_local_0001_r_000000_0' done.
2013-10-9 11:53:34 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
信息:  map 100% reduce 100%
2013-10-9 11:53:34 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
信息: Job complete: job_local_0001
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息: Counters: 20
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:   File Input Format Counters 
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Bytes Read=3025757
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:   File Output Format Counters 
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Bytes Written=183
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:   FileSystemCounters
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     FILE_BYTES_READ=545
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     HDFS_BYTES_READ=6051514
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     FILE_BYTES_WRITTEN=83472
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     HDFS_BYTES_WRITTEN=183
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:   Map-Reduce Framework
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Map output materialized bytes=217
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Map input records=14619
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Reduce shuffle bytes=0
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Spilled Records=16
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Map output bytes=2004
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Total committed heap usage (bytes)=376569856
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Map input bytes=3025757
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     SPLIT_RAW_BYTES=110
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Combine input records=76
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Reduce input records=8
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Reduce input groups=8
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Combine output records=8
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Reduce output records=8
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Map output records=76

用hadoop命令查看HDFS文件

~ hadoop fs -cat /user/hdfs/log_kpi/pv/part-00000

/about  5
/black-ip-list/ 2
/cassandra-clustor/     3
/finance-rhive-repurchase/      13
/hadoop-family-roadmap/ 13
/hadoop-hive-intro/     14
/hadoop-mahout-roadmap/ 20
/hadoop-zookeeper-intro/        6

這樣咱們就獲得了,剛剛日誌文件中的,指定頁面的PV值。

指定頁面,就像網站的站點地圖同樣,若是沒有指定全部訪問連接都會被找出來,經過「站點地圖」的指定,咱們能夠更容易地找到,咱們所須要的信息。

後面,其餘的統計指標的提取思路,和PV的實現過程都是相似的,你們能夠直接下載源代碼,運行看到結果!!

後面我會把我代碼上傳到github上面:

https://github.com/blench/

相關文章
相關標籤/搜索