實現WorldCount的流程以下:java
備註:其中輸入的數據是一個txt文件,裏面有各類單詞,每一行中用空格進行空行linux
咱們在IDEA是使用「ctrl+alt+鼠標左鍵點擊」的方式來查看源碼,咱們首先查看mapper 類的源碼,同時源碼我已經使用了,以下所示:apache
// // Source code recreated from a .class file by IntelliJ IDEA // (powered by FernFlower decompiler) // package org.apache.hadoop.mapreduce; import java.io.IOException; import org.apache.hadoop.classification.InterfaceAudience.Public; import org.apache.hadoop.classification.InterfaceStability.Stable; @Public @Stable public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> { public Mapper() { }
//在任務開始以前,setup必然被調用一次 protected void setup(Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>.Context context) throws IOException, InterruptedException { }
//在input split的時候,對每個key/value的pair都call once.大多數程序都會overide這個方法 protected void map(KEYIN key, VALUEIN value, Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>.Context context) throws IOException, InterruptedException { context.write(key, value); } //在at the end of the task,這個方法被調用一次 protected void cleanup(Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>.Context context) throws IOException, InterruptedException { } //把整個程序,裏面的全部方法串連起來 public void run(Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>.Context context) throws IOException, InterruptedException { this.setup(context); try { while(context.nextKeyValue()) {//每次僅讀取一行數據 this.map(context.getCurrentKey(), context.getCurrentValue(), context); } } finally { this.cleanup(context); } }
//上下文,封裝了程序當中大量的分析方法 public abstract class Context implements MapContext<KEYIN, VALUEIN, KEYOUT, VALUEOUT> { public Context() { } } }
所以咱們根據裏面的源碼,編寫wordcount所須要的mapper的代碼,以下所示:app
//如今咱們開始編寫wordcount的示例 public class WordcountMapper extends Mapper<LongWritable, Text,Text, IntWritable> { //mapper後面的參數: // 1.輸入數據的key類型 // 2.輸入數據的value類型 // 3.輸出數據的key類型 // 4.輸出數據的value的類型 protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { //1.首先獲取一行 String line=value.toString(); //2.將獲取後的單詞進行分割,按照空格進行分割 String[] words=line.split(" "); //3.循環輸出(不是輸出到控制檯上面,是輸出到reducer裏進行處理) for(String word:words) { Text k=new Text();//定義咱們輸出的類型,確定是Text,和整個類extends的順序對應 k.set(word); IntWritable v=new IntWritable(); v.set(1);//將value設置爲1 context.write(k,v); } } }
reducer的源碼以下,和mapper的源碼很是類似,其實也就是對reducer的方法進行了封裝,並無方法體:分佈式
import java.io.IOException; import java.util.Iterator; import org.apache.hadoop.classification.InterfaceAudience.Public; import org.apache.hadoop.classification.InterfaceStability.Stable; import org.apache.hadoop.mapreduce.ReduceContext.ValueIterator; import org.apache.hadoop.mapreduce.task.annotation.Checkpointable; @Checkpointable @Public @Stable public class Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT> { public Reducer() { } protected void setup(Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT>.Context context) throws IOException, InterruptedException { } protected void reduce(KEYIN key, Iterable<VALUEIN> values, Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT>.Context context) throws IOException, InterruptedException { Iterator i$ = values.iterator(); while(i$.hasNext()) { VALUEIN value = i$.next(); context.write(key, value); } } protected void cleanup(Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT>.Context context) throws IOException, InterruptedException { } public void run(Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT>.Context context) throws IOException, InterruptedException { this.setup(context); try { while(context.nextKey()) { this.reduce(context.getCurrentKey(), context.getValues(), context); Iterator<VALUEIN> iter = context.getValues().iterator(); if (iter instanceof ValueIterator) { ((ValueIterator)iter).resetBackupStore(); } } } finally { this.cleanup(context); } } public abstract class Context implements ReduceContext<KEYIN, VALUEIN, KEYOUT, VALUEOUT> { public Context() { } } }
代碼以下:ide
import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.mapreduce.Reducer; import javax.xml.soap.Text; import java.io.IOException; public class WordCountReducer extends Reducer<Text, IntWritable,Text,IntWritable> { @Override protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { super.reduce(key, values, context); //在reduce裏拿到的是mapper已經map好的數據 //如今數據的形式是這樣的: //atguigu(key),1(value) //atguigu(key),1(value) int sum=0; //累計求和 for(IntWritable value: values) { sum+=value.get();//將intwrite對象轉化爲int對象 } IntWritable v=new IntWritable(); v.set(sum); //2.寫出 atguigu 2 context.write(key,v); //總結,這個程序看起來並無起到分開不一樣單詞,並對同一單詞的value進行相加的做用啊 //惟一的功能則是統計僅有一個單詞的字符之和,這有啥用...... } }
代碼以下:oop
import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.fs.Path; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; public class wordcoundDriver { //將mapper和reducer進行啓動的類 //driver是徹底格式固定的 public static void main(String[] args) throws Exception { Configuration conf=new Configuration(); //1.獲取Job對象 Job job=Job.getInstance(conf); //2.設置jar儲存位置 job.setJarByClass(wordcoundDriver.class); //3.關聯map和reduce類 job.setMapperClass(WordcountMapper.class); job.setReducerClass(WordCountReducer.class); //4.設置mapper階段輸出數據的key和value類型 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(IntWritable.class); //5.設置最終數據輸出的key和value類型 job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); //6.設置輸入路徑和輸出路徑 FileInputFormat.setInputPaths(job,new Path(args[0])); FileInputFormat.setInputPaths(job,new Path(args[1])); //7.提交Job job.submit(); job.waitForCompletion(true); } }
這樣就能夠運行起來了!你們能夠嘗試在分佈式集羣上實現wordcount統計這個功能,只須要將這些代碼進行打成jar包,這樣就能夠放到linux操做系統上去運行了!最後運行的時候,路徑寫的是HDFS上的路徑哦!ui