【Spark篇】---SparkStreaming算子操做transform和updateStateByKey

1、前述java

今天分享一篇SparkStreaming經常使用的算子transform和updateStateByKey。node

  • 能夠經過transform算子,對Dstream作RDD到RDD的任意操做。其實就是DStream的類型轉換。

            算子內,拿到的RDD算子外,代碼是在Driver端執行的,每一個batchInterval執行一次,能夠作到動態改變廣播變量。apache

  • 爲SparkStreaming中每個Key維護一份state狀態,經過更新函數對該key的狀態不斷更新。windows

2、具體細節api

        一、transform 是一個transformation類算子socket

package com.spark.sparkstreaming;

import java.util.ArrayList;
import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;

import com.google.common.base.Optional;

import scala.Tuple2;
/**
 * 過濾黑名單
 * transform操做
 * DStream能夠經過transform作RDD到RDD的任意操做。
 * @author root
 *
 */
public class TransformOperator {
    public static void main(String[] args) {
        SparkConf conf = new SparkConf();
        conf.setMaster("local[2]").setAppName("transform");
        JavaStreamingContext jsc = new JavaStreamingContext(conf,Durations.seconds(5));
        
        //模擬黑名單
        List<Tuple2<String,Boolean>> blackList = new ArrayList<Tuple2<String,Boolean>>();
        blackList.add(new Tuple2<String,Boolean>("zhangsan",true));
        //將黑名單轉換成RDD
        final JavaPairRDD<String, Boolean> blackNameRDD = jsc.sparkContext().parallelizePairs(blackList);
        
        //接受socket數據源
        JavaReceiverInputDStream<String> nameList = jsc.socketTextStream("node5", 9999);
        JavaPairDStream<String, String> pairNameList = 
                nameList.mapToPair(new PairFunction<String, String, String>() {

            /**
             *這塊代碼在Driver端執行。
             */
            private static final long serialVersionUID = 1L;

            @Override
            public Tuple2<String, String> call(String s) throws Exception {
                return new Tuple2<String, String>(s.split(" ")[1], s);
            }
        });
        JavaDStream<String> transFormResult =
                pairNameList.transform(new Function<JavaPairRDD<String,String>, JavaRDD<String>>() {

            /**
             * 
             */
            private static final long serialVersionUID = 1L;

            @Override
            public JavaRDD<String> call(JavaPairRDD<String, String> nameRDD)
                    throws Exception {
                /**
                 * nameRDD:
                 *   ("zhangsan","1 zhangsan")
                 *   ("lisi","2 lisi")
                 *   ("wangwu","3 wangwu")
                 * blackNameRDD:
                 *   ("zhangsan",true)
                 *   
                 * ("zhangsan",("1 zhangsan",[true]))
                 * 
                 */
                JavaPairRDD<String, Tuple2<String, Optional<Boolean>>> leftOuterJoin = 
                        nameRDD.leftOuterJoin(blackNameRDD);
                //打印下leftOuterJoin
                /*leftOuterJoin.foreach(new VoidFunction<Tuple2<String,Tuple2<String,Optional<Boolean>>>>() {
                    
                    *//**
                     * 
                     *//*
                    private static final long serialVersionUID = 1L;

                    @Override
                    public void call(Tuple2<String, Tuple2<String, Optional<Boolean>>> t)
                            throws Exception {
                        System.out.println(t);
                    }
                });*/
                
                
                //過濾:true的留下,false的過濾
                //("zhangsan",("1 zhangsan",[true]))
                JavaPairRDD<String, Tuple2<String, Optional<Boolean>>> filter = 
                        leftOuterJoin.filter(new Function<Tuple2<String,Tuple2<String,Optional<Boolean>>>, Boolean>() {

                    /**
                     * 
                     */
                    private static final long serialVersionUID = 1L;

                    @Override
                    public Boolean call(Tuple2<String, Tuple2<String, Optional<Boolean>>> tuple)throws Exception {
                        if(tuple._2._2.isPresent()){
                            return !tuple._2._2.get();
                        }
                        return true;
                    }
                });
                
                JavaRDD<String> resultJavaRDD = filter.map(new Function<Tuple2<String,Tuple2<String,Optional<Boolean>>>, String>() {

                    /**
                     * 
                     */
                    private static final long serialVersionUID = 1L;

                    @Override
                    public String call(
                            Tuple2<String, Tuple2<String, Optional<Boolean>>> tuple)
                            throws Exception {
                        
                        return tuple._2._1;
                    }
                });
                
                //返回過濾好的結果
                return resultJavaRDD;
            }
        });
        
        transFormResult.print();
        
        jsc.start();
        jsc.awaitTermination();
        jsc.stop();
    }
}

 二、UpdateStateByKey算子(至關於對不一樣批次的累加和更新)ide

 

UpdateStateByKey的主要功能: * 一、爲Spark Streaming中每個Key維護一份state狀態,state類型能夠是任意類型的, 能夠是一個自定義的對象,那麼更新函數也能夠是自定義的。 * 二、經過更新函數對該key的狀態不斷更新,對於每一個新的batch而言,Spark Streaming會在使用updateStateByKey的時候爲已經存在的key進行state的狀態更新

     *  使用到updateStateByKey要開啓checkpoint機制和功能。函數

     *   多久會將內存中的數據寫入到磁盤一份?優化

         若是batchInterval設置的時間小於10秒,那麼10秒寫入磁盤一份。若是batchInterval設置的時間大於10秒,那麼就會batchInterval時間間隔寫入磁盤一份。google

 java代碼:

package com.spark.sparkstreaming;

import java.util.Arrays;
import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;

import com.google.common.base.Optional;

import scala.Tuple2;

/**
 * UpdateStateByKey的主要功能:
 * 一、爲Spark Streaming中每個Key維護一份state狀態,state類型能夠是任意類型的, 能夠是一個自定義的對象,那麼更新函數也能夠是自定義的。
 * 二、經過更新函數對該key的狀態不斷更新,對於每一個新的batch而言,Spark Streaming會在使用updateStateByKey的時候爲已經存在的key進行state的狀態更新
 * 
 * hello,3
 * spark,2
 * 
 * 若是要不斷的更新每一個key的state,就必定涉及到了狀態的保存和容錯,這個時候就須要開啓checkpoint機制和功能 
 * 
 * 全面的廣告點擊分析
 * @author root
 *
 * 有何用?   統計廣告點擊流量,統計這一天的車流量,統計點擊量
 */

public class UpdateStateByKeyOperator {
    public static void main(String[] args) {
        SparkConf conf = new SparkConf().setMaster("local[2]").setAppName("UpdateStateByKeyDemo");
        JavaStreamingContext jsc = new JavaStreamingContext(conf, Durations.seconds(5));
        /**
         * 設置checkpoint目錄
         * 
       * 多久會將內存中的數據(每個key所對應的狀態)寫入到磁盤上一份呢? * 若是你的batch interval小於10s 那麼10s會將內存中的數據寫入到磁盤一份 * 若是bacth interval 大於10s,那麼就以bacth interval爲準
         * 
         * 這樣作是爲了防止頻繁的寫HDFS
         */
        JavaSparkContext sparkContext = jsc.sparkContext();
        sparkContext.setCheckpointDir("./checkpoint");
        
//         jsc.checkpoint("hdfs://node1:9000/spark/checkpoint");
//         jsc.checkpoint("./checkpoint");
         
        JavaReceiverInputDStream<String> lines = jsc.socketTextStream("node5", 9999);

        JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
            /**
             * 
             */
            private static final long serialVersionUID = 1L;

            @Override
            public Iterable<String> call(String s) {
                return Arrays.asList(s.split(" "));
            }
        });

        JavaPairDStream<String, Integer> ones = words.mapToPair(new PairFunction<String, String, Integer>() {
            /**
             * 
             */
            private static final long serialVersionUID = 1L;

            @Override
            public Tuple2<String, Integer> call(String s) {
                return new Tuple2<String, Integer>(s, 1);
            }
        });

        JavaPairDStream<String, Integer> counts = 
                ones.updateStateByKey(new Function2<List<Integer>, Optional<Integer>, Optional<Integer>>() {

            /**
             * 
             */
            private static final long serialVersionUID = 1L;

            @Override
            public Optional<Integer> call(List<Integer> values, Optional<Integer> state) throws Exception {
                /** * values:通過分組最後 這個key所對應的value [1,1,1,1,1] * state:這個key在本次以前以前的狀態 */
                Integer updateValue = 0 ;
                 if(state.isPresent()){
                     updateValue = state.get();
                 }
                 
                 for (Integer value : values) { updateValue += value; } return Optional.of(updateValue);
            }
        });
//output operator  counts.print(); jsc.start(); jsc.awaitTermination(); jsc.close(); } }

 scala代碼:

package com.bjsxt.sparkstreaming

import org.apache.spark.SparkConf
import org.apache.spark.streaming.Durations
import org.apache.spark.streaming.StreamingContext

object Operator_UpdateStateByKey {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
    conf.setMaster("local[2]").setAppName("updateStateByKey")
    val jsc = new StreamingContext(conf,Durations.seconds(5))
    //設置日誌級別
    jsc.sparkContext.setLogLevel("WARN")
    //設置checkpoint路徑
    jsc.checkpoint("hdfs://node1:9000/spark/checkpoint")
    
    val lineDStream = jsc.socketTextStream("node5", 9999)
    val wordDStream = lineDStream.flatMap { _.split(" ") }
    val pairDStream = wordDStream.map { (_,1)}
    
    val result = pairDStream.updateStateByKey((seq:Seq[Int],option:Option[Int])=>{
      var value = 0
      value += option.getOrElse(0)
      for(elem <- seq){
        value +=elem
      }
      
     Option(value)
    })
    
    result.print()
    jsc.start()
    jsc.awaitTermination()
    jsc.stop()
  }
}

 結果:

 可見從啓動以來一直維護這個累加狀態!!!

 2、windows窗口函數(實現一階段內的累加 ,而不是程序啓動時)

        假設每隔5s 1個batch,上圖中窗口長度爲15s,窗口滑動間隔10s。

        窗口長度和滑動間隔必須是batchInterval的整數倍。若是不是整數倍會檢測報錯

       優化後的window操做要保存狀態因此要設置checkpoint路徑,沒有優化的window操做能夠不設置checkpoint路徑。

package com.spark.sparkstreaming;

import java.util.Arrays;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;

import scala.Tuple2;

/**
 * 基於滑動窗口的熱點搜索詞實時統計
 * @author root
 *
 */
public class WindowOperator {
    
    public static void main(String[] args) {
        SparkConf conf = new SparkConf()
                .setMaster("local[2]")
                .setAppName("WindowHotWord"); 
        
        JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(5));
        /**
         * 設置日誌級別爲WARN
         *
         */
        jssc.sparkContext().setLogLevel("WARN");
        /**
         * 注意:
         *  沒有優化的窗口函數能夠不設置checkpoint目錄
         *  優化的窗口函數必須設置checkpoint目錄         
         */
//           jssc.checkpoint("hdfs://node1:9000/spark/checkpoint");
           jssc.checkpoint("./checkpoint");
        JavaReceiverInputDStream<String> searchLogsDStream = jssc.socketTextStream("node04", 9999);
        //word    1
        JavaDStream<String> searchWordsDStream = searchLogsDStream.flatMap(new FlatMapFunction<String, String>() {

            /**
             * 
             */
            private static final long serialVersionUID = 1L;

            @Override
            public Iterable<String> call(String t) throws Exception {
                return Arrays.asList(t.split(" "));
            }
        });
        
        // 將搜索詞映射爲(searchWord, 1)的tuple格式
        JavaPairDStream<String, Integer> searchWordPairDStream = searchWordsDStream.mapToPair(
                
                new PairFunction<String, String, Integer>() {

                    private static final long serialVersionUID = 1L;

                    @Override
                    public Tuple2<String, Integer> call(String searchWord)
                            throws Exception {
                        return new Tuple2<String, Integer>(searchWord, 1);
                    }
                    
                });
        /**
         * 每隔10秒,計算最近60秒內的數據,那麼這個窗口大小就是60秒,裏面有12個rdd,在沒有計算以前,這些rdd是不會進行計算的。
         * 那麼在計算的時候會將這12個rdd聚合起來,而後一塊兒執行reduceByKeyAndWindow操做 ,
         * reduceByKeyAndWindow是針對窗口操做的而不是針對DStream操做的。 */
            JavaPairDStream<String, Integer> searchWordCountsDStream = 
                
                searchWordPairDStream.reduceByKeyAndWindow(new Function2<Integer, Integer, Integer>() {

                    private static final long serialVersionUID = 1L;

                    @Override
                    public Integer call(Integer v1, Integer v2) throws Exception {
                        return v1 + v2;
                    }
        }, Durations.seconds(15), Durations.seconds(5)); //窗口長度,滑動間隔
        
        
        /**
         * window窗口操做優化:不用設置checkpoint目錄。 */
//         JavaPairDStream<String, Integer> searchWordCountsDStream = 
//        
//         searchWordPairDStream.reduceByKeyAndWindow(new Function2<Integer, Integer, Integer>() {
//
//            private static final long serialVersionUID = 1L;
//
//            @Override
//            public Integer call(Integer v1, Integer v2) throws Exception {
//                return v1 + v2;
//            }
//            
//        },new Function2<Integer, Integer, Integer>() {
//
//            private static final long serialVersionUID = 1L;
//
//            @Override
//            public Integer call(Integer v1, Integer v2) throws Exception {
//                return v1 - v2;
//            }
//            
//        }, Durations.seconds(15), Durations.seconds(5));    

          searchWordCountsDStream.print();
        
        jssc.start();
        jssc.awaitTermination();
        jssc.close();
    }

}

 

 Scala代碼:

package com.bjsxt.sparkstreaming

import org.apache.spark.SparkConf
import org.apache.spark.streaming.Durations
import org.apache.spark.streaming.StreamingContext

object Operator_Window {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
    conf.setMaster("local[2]").setAppName("updateStateByKey")
    val jsc = new StreamingContext(conf,Durations.seconds(5))
    //設置日誌級別
    jsc.sparkContext.setLogLevel("WARN")
    //設置checkpoint路徑
    jsc.checkpoint("hdfs://node1:9000/spark/checkpoint")
    val lineDStream = jsc.socketTextStream("node04", 9999)
    val wordDStream = lineDStream.flatMap { _.split(" ") }
    val mapDStream = wordDStream.map { (_,1)}
    
    
    //window沒有優化後的
    val result = mapDStream.reduceByKeyAndWindow((v1:Int,v2:Int)=>{
        v1+v2
      }, Durations.seconds(60), Durations.seconds(10))
      
   //優化後的
//   val result = mapDStream.reduceByKeyAndWindow((v1:Int,v2:Int)=>{
//       v1+v2
//     }, (v1:Int,v2:Int)=>{
//       v1-v2
//     }, Durations.seconds(60), Durations.seconds(10))

    result.print()
    jsc.start()
    jsc.awaitTermination()
    jsc.stop()
  }
}

 結果:

 

相關文章
相關標籤/搜索