當發佈python第三方package時,並不但願代碼中全部的函數或者class能夠被外部import,在__init__.py中添加__all__屬性,該list中填寫能夠import的類或者函數名, 能夠起到限制的import的做用, 防止外部import其餘函數或者類。python
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from base import APIBase
from client import Client
from decorator import interface, export, stream
from server import Server
from storage import Storage
from util import (LogFormatter, disable_logging_to_stderr,
enable_logging_to_kids, info)
__all__ = ['APIBase', 'Client', 'LogFormatter', 'Server',
'Storage', 'disable_logging_to_stderr', 'enable_logging_to_kids',
'export', 'info', 'interface', 'stream']
with的魔力安全
with語句須要支持上下文管理協議的對象, 上下文管理協議包含__enter__和__exit__兩個方法。 with語句創建運行時上下文須要經過這兩個方法執行進入和退出操做。閉包
其中上下文表達式是跟在with以後的表達式, 該表達式返回一個上下文管理對象。app
# 常見with使用場景
with open("test.txt", "r") as my_file: # 注意, 是__enter__()方法的返回值賦值給了my_file,
for line in my_file:
print line
詳細原理能夠查看這篇文章, 淺談 Python 的 with 語句。函數
知道具體原理,咱們能夠自定義支持上下文管理協議的類,類中實現__enter__和__exit__方法。this
#!/usr/bin/env python
# -*- coding: utf-8 -*-
class MyWith(object):
def __init__(self):
print "__init__ method"
def __enter__(self):
print "__enter__ method"
return self # 返回對象給as後的變量
def __exit__(self, exc_type, exc_value, exc_traceback):
print "__exit__ method"
if exc_traceback is None:
print "Exited without Exception"
return True
else:
print "Exited with Exception"
return False
def test_with():
with MyWith() as my_with:
print "running my_with"
print "------分割線-----"
with MyWith() as my_with:
print "running before Exception"
raise Exception
print "running after Exception"
if __name__ == '__main__':
test_with()
執行結果以下:命令行
__init__ method
__enter__ method
running my_with
__exit__ method
Exited without Exception
------分割線-----
__init__ method
__enter__ method
running before Exception
__exit__ method
Exited with Exception
Traceback (most recent call last):
File "bin/python", line 34, in <module>
exec(compile(__file__f.read(), __file__, "exec"))
File "test_with.py", line 33, in <module>
test_with()
File "test_with.py", line 28, in test_with
raise Exception
Exception
證實了會先執行__enter__方法, 而後調用with內的邏輯, 最後執行__exit__作退出處理, 而且, 即便出現異常也能正常退出code
filter的用法orm
相對filter而言, map和reduce使用的會更頻繁一些, filter正如其名字, 按照某種規則過濾掉一些元素。server
#!/usr/bin/env python
# -*- coding: utf-8 -*-
lst = [1, 2, 3, 4, 5, 6]
# 全部奇數都會返回True, 偶數會返回False被過濾掉
print filter(lambda x: x % 2 != 0, lst)
#輸出結果
[1, 3, 5]
一行做判斷
當條件知足時, 返回的爲等號後面的變量, 不然返回else後語句。
lst = [1, 2, 3]
new_lst = lst[0] if lst is not None else None
print new_lst
# 打印結果
1
裝飾器之單例
使用裝飾器實現簡單的單例模式
# 單例裝飾器
def singleton(cls):
instances = dict() # 初始爲空
def _singleton(*args, **kwargs):
if cls not in instances: #若是不存在, 則建立並放入字典
instances[cls] = cls(*args, **kwargs)
return instances[cls]
return _singleton
@singleton
class Test(object):
pass
if __name__ == '__main__':
t1 = Test()
t2 = Test()
# 二者具備相同的地址
print t1, t2
staticmethod裝飾器
類中兩種經常使用的裝飾, 首先區分一下他們:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
class A(object):
# 普通成員函數
def foo(self, x):
print "executing foo(%s, %s)" % (self, x)
@classmethod # 使用classmethod進行裝飾
def class_foo(cls, x):
print "executing class_foo(%s, %s)" % (cls, x)
@staticmethod # 使用staticmethod進行裝飾
def static_foo(x):
print "executing static_foo(%s)" % x
def test_three_method():
obj = A()
# 直接調用噗通的成員方法
obj.foo("para") # 此處obj對象做爲成員函數的隱式參數, 就是self
obj.class_foo("para") # 此處類做爲隱式參數被傳入, 就是cls
A.class_foo("para") #更直接的類方法調用
obj.static_foo("para") # 靜態方法並無任何隱式參數, 可是要經過對象或者類進行調用
A.static_foo("para")
if __name__ == '__main__':
test_three_method()
# 函數輸出
executing foo(<__main__.A object at 0x100ba4e10>, para)
executing class_foo(<class '__main__.A'>, para)
executing class_foo(<class '__main__.A'>, para)
executing static_foo(para)
executing static_foo(para)
property裝飾器
將property與裝飾器結合實現屬性私有化(更簡單安全的實現get和set方法)。
#python內建函數
property(fget=None, fset=None, fdel=None, doc=None)
fget是獲取屬性的值的函數,fset是設置屬性值的函數,fdel是刪除屬性的函數,doc是一個字符串(像註釋同樣)。從實現來看,這些參數都是可選的。
property有三個方法getter(), setter()和delete() 來指定fget, fset和fdel。 這表示如下這行:
class Student(object):
@property #至關於property.getter(score) 或者property(score)
def score(self):
return self._score
@score.setter #至關於score = property.setter(score)
def score(self, value):
if not isinstance(value, int):
raise ValueError('score must be an integer!')
if value < 0 or value > 100:
raise ValueError('score must between 0 ~ 100!')
self._score = value
iter魔法
#!/usr/bin/env python
# -*- coding: utf-8 -*-
class TestIter(object):
def __init__(self):
self.lst = [1, 2, 3, 4, 5]
def read(self):
for ele in xrange(len(self.lst)):
yield ele
def __iter__(self):
return self.read()
def __str__(self):
return ','.join(map(str, self.lst))
__repr__ = __str__
def test_iter():
obj = TestIter()
for num in obj:
print num
print obj
if __name__ == '__main__':
test_iter()
神奇partial
partial使用上很像C++中仿函數(函數對象)。
在stackoverflow給出了相似與partial的運行方式:
def partial(func, *part_args):
def wrapper(*extra_args):
args = list(part_args)
args.extend(extra_args)
return func(*args)
return wrapper
利用用閉包的特性綁定預先綁定一些函數參數,返回一個可調用的變量, 直到真正的調用執行:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from functools import partial
def sum(a, b):
return a + b
def test_partial():
fun = partial(sum, 2) # 事先綁定一個參數, fun成爲一個只須要一個參數的可調用變量
print fun(3) # 實現執行的便是sum(2, 3)
if __name__ == '__main__':
test_partial()
# 執行結果
5
神祕eval
eval我理解爲一種內嵌的python解釋器(這種解釋可能會有誤差), 會解釋字符串爲對應的代碼並執行, 而且將執行結果返回。
看一下下面這個例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
def test_first():
return 3
def test_second(num):
return num
action = { # 能夠看作是一個sandbox
"para": 5,
"test_first" : test_first,
"test_second": test_second
}
def test_eavl():
condition = "para == 5 and test_second(test_first) > 5"
res = eval(condition, action) # 解釋condition並根據action對應的動做執行
print res
if __name__ == '_
exec
#!/usr/bin/env python
# -*- coding: utf-8 -*-
def test_first():
print "hello"
def test_second():
test_first()
print "second"
def test_third():
print "third"
action = {
"test_second": test_second,
"test_third": test_third
}
def test_exec():
exec "test_second" in action
if __name__ == '__main__':
test_exec() # 沒法看到執行結果
getattr
getattr(object, name[, default])返回對象的命名屬性,屬性名必須是字符串。若是字符串是對象的屬性名之一,結果就是該屬性的值。例如, getattr(x, ‘foobar’) 等價於 x.foobar。 若是屬性名不存在,若是有默認值則返回默認值,不然觸發 AttributeError 。
# 使用範例
class TestGetAttr(object):
test = "test attribute"
def say(self):
print "test method"
def test_getattr():
my_test = TestGetAttr()
try:
print getattr(my_test, "test")
except AttributeError:
print "Attribute Error!"
try:
getattr(my_test, "say")()
except AttributeError: # 沒有該屬性, 且沒有指定返回值的狀況下
print "Method Error!"
if __name__ == '__main__':
test_getattr()
# 輸出結果
test attribute
test method
命令行處理
def process_command_line(argv):
"""
Return a 2-tuple: (settings object, args list).
`argv` is a list of arguments, or `None` for ``sys.argv[1:]``.
"""
if argv is None:
argv = sys.argv[1:]
# initialize the parser object:
parser = optparse.OptionParser(
formatter=optparse.TitledHelpFormatter(width=78),
add_help_option=None)
# define options here:
parser.add_option( # customized description; put --help last
'-h', '--help', action='help',
help='Show this help message and exit.')
settings, args = parser.parse_args(argv)
# check number of arguments, verify values, etc.:
if args:
parser.error('program takes no command-line arguments; '
'"%s" ignored.' % (args,))
# further process settings & args if necessary
return settings, args
def main(argv=None):
settings, args = process_command_line(argv)
# application code here, like:
# run(settings, args)
return 0 # success
if __name__ == '__main__':
status = main()
sys.exit(status)
讀寫csv文件
# 從csv中讀取文件, 基本和傳統文件讀取相似
import csv
with open('data.csv', 'rb') as f:
reader = csv.reader(f)
for row in reader:
print row
# 向csv文件寫入
import csv
with open( 'data.csv', 'wb') as f:
writer = csv.writer(f)
writer.writerow(['name', 'address', 'age']) # 單行寫入
data = [
( 'xiaoming ','china','10'),
( 'Lily', 'USA', '12')]
writer.writerows(data) # 多行寫入
各類時間形式轉換
只發一張網上的圖, 而後查文檔就行了, 這個是記不住的
字符串格式化
一個很是好用, 不少人又不知道的功能:
>>> name = "andrew">>> "my name is {name}".format(name=name)'my name is andrew'