本文首發於我的博客https://kezunlin.me/post/7a6ba82e/,歡迎閱讀!html
speed up opencv image processing with openmplinux
CXX_FLAGS=-fopenmp
C/C++| Language | /openmp
#include <omp.h> #pragma omp parallel for for loop ...
#include <iostream> #include <omp.h> int main() { omp_set_num_threads(4); #pragma omp parallel for for (int i = 0; i < 8; i++) { printf("i = %d, I am Thread %d\n", i, omp_get_thread_num()); } printf("\n"); return 0; } /* i = 0, I am Thread 0 i = 1, I am Thread 0 i = 4, I am Thread 2 i = 5, I am Thread 2 i = 6, I am Thread 3 i = 7, I am Thread 3 i = 2, I am Thread 1 i = 3, I am Thread 1 */
use CXX_FLAGS=-fopenmp
in CMakeLists.txtios
cmake_minimum_required(VERSION 3.0.0) project(hello) find_package(OpenMP REQUIRED) if(OPENMP_FOUND) message("OPENMP FOUND") message([main] " OpenMP_C_FLAGS=${OpenMP_C_FLAGS}") # -fopenmp message([main] " OpenMP_CXX_FLAGS}=${OpenMP_CXX_FLAGS}") # -fopenmp message([main] " OpenMP_EXE_LINKER_FLAGS=${OpenMP_EXE_LINKER_FLAGS}") # *** # no use for xxx_INCLUDE_DIRS and xxx_libraries for OpenMP message([main] " OpenMP_INCLUDE_DIRS=${OpenMP_INCLUDE_DIRS}") # *** message([main] " OpenMP_LIBRARIES=${OpenMP_LIBRARIES}") # *** set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}") set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}") set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${OpenMP_EXE_LINKER_FLAGS}") endif() add_executable(hello hello.cpp) #target_link_libraries(hello xxx)
options c++
or use g++ hello.cpp -fopenmp
to compileubuntu
list dynamic dependencies (ldd)segmentfault
ldd hello linux-vdso.so.1 => (0x00007ffd71365000) libstdc++.so.6 => /usr/lib/x86_64-linux-gnu/libstdc++.so.6 (0x00007f8ea7f00000) libgomp.so.1 => /usr/lib/x86_64-linux-gnu/libgomp.so.1 (0x00007f8ea7cde000) libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f8ea7914000) libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007f8ea760b000) /lib64/ld-linux-x86-64.so.2 (0x00007f8ea8282000) libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007f8ea73f5000) libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007f8ea71f1000) libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007f8ea6fd4000)
libgomp.so.1 => /usr/lib/x86_64-linux-gnu/libgomp.so.1
list names (nm)windows
nm hello 0000000000602080 B __bss_start 0000000000602190 b completed.7594 U __cxa_atexit@@GLIBC_2.2.5 0000000000602070 D __data_start 0000000000602070 W data_start 0000000000400b00 t deregister_tm_clones 0000000000400b80 t __do_global_dtors_aux 0000000000601df8 t __do_global_dtors_aux_fini_array_entry 0000000000602078 d __dso_handle 0000000000601e08 d _DYNAMIC 0000000000602080 D _edata 0000000000602198 B _end 0000000000400d44 T _fini 0000000000400ba0 t frame_dummy 0000000000601de8 t __frame_dummy_init_array_entry 0000000000400f18 r __FRAME_END__ 0000000000602000 d _GLOBAL_OFFSET_TABLE_ 0000000000400c28 t _GLOBAL__sub_I_main w __gmon_start__ 0000000000400d54 r __GNU_EH_FRAME_HDR U GOMP_parallel@@GOMP_4.0 U __gxx_personality_v0@@CXXABI_1.3 00000000004009e0 T _init 0000000000601df8 t __init_array_end 0000000000601de8 t __init_array_start 0000000000400d50 R _IO_stdin_used w _ITM_deregisterTMCloneTable w _ITM_registerTMCloneTable 0000000000601e00 d __JCR_END__ 0000000000601e00 d __JCR_LIST__ w _Jv_RegisterClasses 0000000000400d40 T __libc_csu_fini 0000000000400cd0 T __libc_csu_init U __libc_start_main@@GLIBC_2.2.5 0000000000400bc6 T main 0000000000400c3d t main._omp_fn.0 U omp_get_num_threads@@OMP_1.0 U omp_get_thread_num@@OMP_1.0 0000000000400b40 t register_tm_clones 0000000000400ad0 T _start 0000000000602080 d __TMC_END__ 0000000000400bea t _Z41__static_initialization_and_destruction_0ii U _ZNSolsEPFRSoS_E@@GLIBCXX_3.4 U _ZNSt8ios_base4InitC1Ev@@GLIBCXX_3.4 U _ZNSt8ios_base4InitD1Ev@@GLIBCXX_3.4 0000000000602080 B _ZSt4cout@@GLIBCXX_3.4 U _ZSt4endlIcSt11char_traitsIcEERSt13basic_ostreamIT_T0_ES6_@@GLIBCXX_3.4 0000000000602191 b _ZStL8__ioinit U _ZStlsISt11char_traitsIcEERSt13basic_ostreamIcT_ES5_c@@GLIBCXX_3.4
omp_get_num_threads
,omp_get_thread_num
OpenMP的指令格式數組
#pragma omp directive [clause[clause]…] #pragma omp parallel private(i, j)
parallel
is directive,private
is clause
OpenMP 對能夠多線程化的循環有以下五個要求:多線程
若是你的循環不符合這些條件,那就只好改寫了.app
avoid race condition
當一個循環知足以上五個條件時,依然可能由於數據依賴而不可以合理的並行化。當兩個不一樣的迭代之間的數據存在依賴關係時,就會發生這種狀況。
// 假設數組已經初始化爲1 #pragma omp parallel for for (int i = 2; i < 10; i++) { factorial[i] = i * factorial[i-1]; }
ERROR.
omp_set_num_threads(4); #pragma omp parallel { #pragma omp for for (int i = 0; i < 8; i++) { printf("i = %d, I am Thread %d\n", i, omp_get_thread_num()); } }
same as
omp_set_num_threads(4); #pragma omp parallel for for (int i = 0; i < 8; i++) { printf("i = %d, I am Thread %d\n", i, omp_get_thread_num()); }
#pragma omp parallel sections # parallel { #pragma omp section # thread-1 { function1(); } #pragma omp section # thread-2 { function2(); } }
parallel sections裏面的內容要並行執行,具體分工上,每一個線程執行其中的一個section
#pragma omp parallel { int x; // private to each thread ? YES } #pragma omp parallel for for (int i = 0; i < 1000; ++i) { int x; // private to each thread ? YES }
local variables are automatically private to each thread.
The reason for the existence of theprivate
clause is so that you don't have to change your code.
see here
The only way to parallelize the following code without the private clause
int i,j; #pragma omp parallel for private(j) for(i = 0; i < n; i++) { for(j = 0; j < n; j++) { //do something } }
is to change the code. For example like this:
int i; #pragma omp parallel for for(i = 0; i < n; i++) { int j; // mark j as local variable to worker thread for(j = 0; j < n; j++) { //do something } }
例如累加
int sum = 0; for (int i = 0; i < 100; i++) { sum += array[i]; // sum須要私有才能實現並行化,可是又必須是公有的才能產生正確結果 }
上面的這個程序裏,sum公有或者私有都不對,爲了解決這個問題,OpenMP 提供了reduction
語句;
int sum = 0; #pragma omp parallel for reduction(+:sum) for (int i = 0; i < 100; i++) { sum += array[i]; }
內部實現中,OpenMP爲每一個線程提供了私有的sum變量(初始化爲0),當線程退出時,OpenMP再把每一個線程私有的sum加在一塊兒獲得最終結果。
num_threads(4)
same as omp_set_num_threads(4)
// `num_threads(4)` same as `omp_set_num_threads(4)` #pragma omp parallel num_threads(4) { printf("Hello, I am Thread %d\n", omp_get_thread_num()); // 0,1,2,3, }
format
#pragma omp parallel for schedule(kind [, chunk size])
kind: see openmp-loop-scheduling and whats-the-difference-between-static-and-dynamic-schedule-in-openmp
static
: Divide the loop into equal-sized chunks or as equal as possible in the case where the number of loop iterations is not evenly divisible by the number of threads multiplied by the chunk size. By default, chunk size is loop_count/number_of_threads
.dynamic
: Use the internal work queue to give a chunk-sized block of loop iterations to each thread. When a thread is finished, it retrieves the next block of loop iterations from the top of the work queue. By default, the chunk size is 1
. Be careful when using this scheduling type because of the extra overhead involved.guided
: special case of dynamic
. Similar to dynamic scheduling, but the chunk size starts off large and decreases to better handle load imbalance between iterations. The optional chunk parameter specifies them minimum size chunk to use. By default the chunk size is approximately loop_count/number_of_threads
.auto
: When schedule (auto) is specified, the decision regarding scheduling is delegated to the compiler
. The programmer gives the compiler the freedom to choose any possible mapping of iterations to threads in the team.runtime
: with ENVOMP_SCHEDULE
, we can test 3 types scheduling: static,dynamic,guided
without recompile the code.The optional parameter (chunk), when specified, must be a positive integer.
默認狀況下,OpenMP認爲全部的循環迭代運行的時間都是同樣的,這就致使了OpenMP會把不一樣的迭代等分到不一樣的核心上,而且讓他們分佈的儘量減少內存訪問衝突,這樣作是由於循環通常會線性地訪問內存, 因此把循環按照前一半後一半的方法分配能夠最大程度的減小衝突. 然而對內存訪問來講這多是最好的方法, 可是對於負載均衡可能並非最好的方法, 並且反過來最好的負載均衡可能也會破壞內存訪問. 所以必須折衷考慮.
內存訪問vs負載均衡,須要折中考慮。
openmp默認使用的schedule是取決於編譯器實現的。gcc默認使用schedule(dynamic,1),也就是動態調度而且塊大小是1.
線程數不要大於實際核數,不然就是oversubscription
isprime能夠對dynamic作一個展現。
omp_get_num_procs
, 返回運行本線程的多處理機的處理器個數。omp_set_num_threads
, 設置並行執行代碼時的線程個數omp_get_num_threads
, 返回當前並行區域中的活動線程(active thread)個數,若是沒有設置,默認爲1。omp_get_thread_num
, 返回線程號(0,1,2,...)omp_init_lock
, 初始化一個簡單鎖omp_set_lock
, 上鎖操做omp_unset_lock
, 解鎖操做,要和omp_set_lock
函數配對使用omp_destroy_lock
,關閉一個鎖,要和 omp_init_lock
函數配對使用check cpu
cat /proc/cpuinfo | grep name | cut -f2 -d: | uniq -c 8 Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz
omp_get_num_procs
return8
.
void test0() { printf("I am Thread %d, omp_get_num_threads = %d, omp_get_num_procs = %d\n", omp_get_thread_num(), omp_get_num_threads(), omp_get_num_procs() ); } /* I am Thread 0, omp_get_num_threads = 1, omp_get_num_procs = 8 */
void test1() { // `parallel`,用在一個代碼段以前,表示這段代碼block將被多個線程並行執行 // if not set `omp_set_num_threads`, by default use `omp_get_num_procs`, eg 8 //omp_set_num_threads(4); // 設置線程數,通常設置的線程數不超過CPU核心數 #pragma omp parallel { printf("Hello, I am Thread %d, omp_get_num_threads = %d, omp_get_num_procs = %d\n", omp_get_thread_num(), omp_get_num_threads(), omp_get_num_procs() ); } } /* Hello, I am Thread 3, omp_get_num_threads = 8, omp_get_num_procs = 8 Hello, I am Thread 7, omp_get_num_threads = 8, omp_get_num_procs = 8 Hello, I am Thread 1, omp_get_num_threads = 8, omp_get_num_procs = 8 Hello, I am Thread 6, omp_get_num_threads = 8, omp_get_num_procs = 8 Hello, I am Thread 5, omp_get_num_threads = 8, omp_get_num_procs = 8 Hello, I am Thread 4, omp_get_num_threads = 8, omp_get_num_procs = 8 Hello, I am Thread 2, omp_get_num_threads = 8, omp_get_num_procs = 8 Hello, I am Thread 0, omp_get_num_threads = 8, omp_get_num_procs = 8 */
void test1_2() { // `parallel`,用在一個代碼段以前,表示這段代碼block將被多個線程並行執行 omp_set_num_threads(4); // 設置線程數,通常設置的線程數不超過CPU核心數 #pragma omp parallel { printf("Hello, I am Thread %d, omp_get_num_threads = %d, omp_get_num_procs = %d\n", omp_get_thread_num(), omp_get_num_threads(), omp_get_num_procs() ); //std::cout << "Hello" << ", I am Thread " << omp_get_thread_num() << std::endl; // 0,1,2,3 } } /* # use `cout` HelloHello, I am Thread Hello, I am Thread , I am Thread Hello, I am Thread 2 1 3 0 */ /* use `printf` Hello, I am Thread 0, omp_get_num_threads = 4, omp_get_num_procs = 8 Hello, I am Thread 3, omp_get_num_threads = 4, omp_get_num_procs = 8 Hello, I am Thread 1, omp_get_num_threads = 4, omp_get_num_procs = 8 Hello, I am Thread 2, omp_get_num_threads = 4, omp_get_num_procs = 8 */
notice the difference ofstd::cout
andprintf
void test1_3() { // `parallel`,用在一個代碼段以前,表示這段代碼block將被多個線程並行執行 omp_set_num_threads(4); #pragma omp parallel for (int i = 0; i < 3; i++) { printf("i = %d, I am Thread %d\n", i, omp_get_thread_num()); } } /* i = 0, I am Thread 1 i = 1, I am Thread 1 i = 2, I am Thread 1 i = 0, I am Thread 3 i = 1, I am Thread 3 i = 2, I am Thread 3 i = 0, I am Thread 2 i = 1, I am Thread 2 i = 2, I am Thread 2 i = 0, I am Thread 0 i = 1, I am Thread 0 i = 2, I am Thread 0 */
void test2() { // `omp parallel` + `omp for` === `omp parallel for` // `omp for` 用在一個for循環以前,表示for循環的每一次iteration將被分配到多個線程並行執行。 // 此處8次iteration被平均分配到4個thread執行,每一個thread執行2次iteration /* iter #thread id 0,1 0 2,3 1 4,5 2 6,7 3 */ omp_set_num_threads(4); #pragma omp parallel { #pragma omp for for (int i = 0; i < 8; i++) { printf("i = %d, I am Thread %d\n", i, omp_get_thread_num()); } } } /* i = 0, I am Thread 0 i = 1, I am Thread 0 i = 2, I am Thread 1 i = 3, I am Thread 1 i = 6, I am Thread 3 i = 7, I am Thread 3 i = 4, I am Thread 2 i = 5, I am Thread 2 */
void test2_2() { // `parallel for`,用在一個for循環以前,表示for循環的每一次iteration將被分配到多個線程並行執行。 // 此處8次iteration被平均分配到4個thread執行,每一個thread執行2次iteration /* iter #thread id 0,1 0 2,3 1 4,5 2 6,7 3 */ omp_set_num_threads(4); #pragma omp parallel for for (int i = 0; i < 8; i++) { printf("i = %d, I am Thread %d\n", i, omp_get_thread_num()); } } /* i = 0, I am Thread 0 i = 1, I am Thread 0 i = 4, I am Thread 2 i = 5, I am Thread 2 i = 6, I am Thread 3 i = 7, I am Thread 3 i = 2, I am Thread 1 i = 3, I am Thread 1 */
void base_sqrt() { boost::posix_time::ptime pt1 = boost::posix_time::microsec_clock::local_time(); float a = 0; for (int i=0;i<1000000000;i++) a = sqrt(i); boost::posix_time::ptime pt2 = boost::posix_time::microsec_clock::local_time(); int64_t cost = (pt2 - pt1).total_milliseconds(); printf("Worker Thread = %d, cost = %d ms\n",omp_get_thread_num(), cost); } void test2_3() { boost::posix_time::ptime pt1 = boost::posix_time::microsec_clock::local_time(); omp_set_num_threads(8); #pragma omp parallel for for (int i=0;i<8;i++) base_sqrt(); boost::posix_time::ptime pt2 = boost::posix_time::microsec_clock::local_time(); int64_t cost = (pt2 - pt1).total_milliseconds(); printf("Main Thread = %d, cost = %d ms\n",omp_get_thread_num(), cost); }
sequential
time ./demo_openmp Worker Thread = 0, cost = 1746 ms Worker Thread = 0, cost = 1711 ms Worker Thread = 0, cost = 1736 ms Worker Thread = 0, cost = 1734 ms Worker Thread = 0, cost = 1750 ms Worker Thread = 0, cost = 1718 ms Worker Thread = 0, cost = 1769 ms Worker Thread = 0, cost = 1732 ms Main Thread = 0, cost = 13899 ms ./demo_openmp 13.90s user 0.00s system 99% cpu 13.903 total
parallel
time ./demo_openmp Worker Thread = 1, cost = 1875 ms Worker Thread = 6, cost = 1876 ms Worker Thread = 0, cost = 1876 ms Worker Thread = 7, cost = 1876 ms Worker Thread = 5, cost = 1877 ms Worker Thread = 3, cost = 1963 ms Worker Thread = 4, cost = 2000 ms Worker Thread = 2, cost = 2027 ms Main Thread = 0, cost = 2031 ms ./demo_openmp 15.10s user 0.01s system 740% cpu 2.041 total
2031s + 10ms(system) = 2041ms (total)
2.041* 740% = 15.1034 s
void test3() { boost::posix_time::ptime pt1 = boost::posix_time::microsec_clock::local_time(); omp_set_num_threads(4); // `parallel sections`裏面的內容要並行執行,具體分工上,每一個線程執行其中的一個`section` #pragma omp parallel sections // parallel { #pragma omp section // thread-0 { base_sqrt(); } #pragma omp section // thread-1 { base_sqrt(); } #pragma omp section // thread-2 { base_sqrt(); } #pragma omp section // thread-3 { base_sqrt(); } } boost::posix_time::ptime pt2 = boost::posix_time::microsec_clock::local_time(); int64_t cost = (pt2 - pt1).total_milliseconds(); printf("Main Thread = %d, cost = %d ms\n",omp_get_thread_num(), cost); } /* time ./demo_openmp Worker Thread = 0, cost = 1843 ms Worker Thread = 1, cost = 1843 ms Worker Thread = 3, cost = 1844 ms Worker Thread = 2, cost = 1845 ms Main Thread = 0, cost = 1845 ms ./demo_openmp 7.39s user 0.00s system 398% cpu 1.855 total */
void test4_error() { int i,j; omp_set_num_threads(4); // we get error result, because `j` is shared between all worker threads. #pragma omp parallel for for(i = 0; i < 4; i++) { for(j = 0; j < 8; j++) { printf("Worker Thread = %d, j = %d ms\n",omp_get_thread_num(), j); } } } /* Worker Thread = 3, j = 0 ms Worker Thread = 3, j = 1 ms Worker Thread = 0, j = 0 ms Worker Thread = 0, j = 3 ms Worker Thread = 0, j = 4 ms Worker Thread = 0, j = 5 ms Worker Thread = 3, j = 2 ms Worker Thread = 3, j = 7 ms Worker Thread = 0, j = 6 ms Worker Thread = 1, j = 0 ms Worker Thread = 2, j = 0 ms */
error results.
void test4_fix1() { int i; omp_set_num_threads(4); // we get error result, because `j` is shared between all worker threads. // fix1: we have to change original code to make j as local variable #pragma omp parallel for for(i = 0; i < 4; i++) { int j; // fix1: `int j` for(j = 0; j < 8; j++) { printf("Worker Thread = %d, j = %d ms\n",omp_get_thread_num(), j); } } } /* Worker Thread = 0, j = 0 ms Worker Thread = 0, j = 1 ms Worker Thread = 2, j = 0 ms Worker Thread = 2, j = 1 ms Worker Thread = 1, j = 0 ms Worker Thread = 1, j = 1 ms Worker Thread = 1, j = 2 ms Worker Thread = 1, j = 3 ms Worker Thread = 1, j = 4 ms Worker Thread = 1, j = 5 ms Worker Thread = 1, j = 6 ms Worker Thread = 1, j = 7 ms Worker Thread = 2, j = 2 ms Worker Thread = 2, j = 3 ms Worker Thread = 2, j = 4 ms Worker Thread = 2, j = 5 ms Worker Thread = 2, j = 6 ms Worker Thread = 2, j = 7 ms Worker Thread = 0, j = 2 ms Worker Thread = 0, j = 3 ms Worker Thread = 0, j = 4 ms Worker Thread = 0, j = 5 ms Worker Thread = 0, j = 6 ms Worker Thread = 0, j = 7 ms Worker Thread = 3, j = 0 ms Worker Thread = 3, j = 1 ms Worker Thread = 3, j = 2 ms Worker Thread = 3, j = 3 ms Worker Thread = 3, j = 4 ms Worker Thread = 3, j = 5 ms Worker Thread = 3, j = 6 ms Worker Thread = 3, j = 7 ms */
void test4_fix2() { int i,j; omp_set_num_threads(4); // we get error result, because `j` is shared between all worker threads. // fix1: we have to change original code to make j as local variable // fix2: use `private(j)`, no need to change original code #pragma omp parallel for private(j) // fix2 for(i = 0; i < 4; i++) { for(j = 0; j < 8; j++) { printf("Worker Thread = %d, j = %d ms\n",omp_get_thread_num(), j); } } } /* Worker Thread = 0, j = 0 ms Worker Thread = 0, j = 1 ms Worker Thread = 0, j = 2 ms Worker Thread = 0, j = 3 ms Worker Thread = 0, j = 4 ms Worker Thread = 0, j = 5 ms Worker Thread = 0, j = 6 ms Worker Thread = 0, j = 7 ms Worker Thread = 2, j = 0 ms Worker Thread = 2, j = 1 ms Worker Thread = 2, j = 2 ms Worker Thread = 2, j = 3 ms Worker Thread = 2, j = 4 ms Worker Thread = 2, j = 5 ms Worker Thread = 2, j = 6 ms Worker Thread = 2, j = 7 ms Worker Thread = 3, j = 0 ms Worker Thread = 3, j = 1 ms Worker Thread = 3, j = 2 ms Worker Thread = 3, j = 3 ms Worker Thread = 3, j = 4 ms Worker Thread = 3, j = 5 ms Worker Thread = 1, j = 0 ms Worker Thread = 1, j = 1 ms Worker Thread = 1, j = 2 ms Worker Thread = 1, j = 3 ms Worker Thread = 1, j = 4 ms Worker Thread = 1, j = 5 ms Worker Thread = 1, j = 6 ms Worker Thread = 1, j = 7 ms Worker Thread = 3, j = 6 ms Worker Thread = 3, j = 7 ms */
void test5_error() { int array[8] = {0,1,2,3,4,5,6,7}; int sum = 0; omp_set_num_threads(4); //#pragma omp parallel for reduction(+:sum) #pragma omp parallel for // ERROR for (int i = 0; i < 8; i++) { sum += array[i]; printf("Worker Thread = %d, sum = %d ms\n",omp_get_thread_num(), sum); } printf("Main Thread = %d, sum = %d ms\n",omp_get_thread_num(), sum); } /* // ERROR RESULT Worker Thread = 0, sum = 0 ms Worker Thread = 0, sum = 9 ms Worker Thread = 3, sum = 8 ms Worker Thread = 3, sum = 16 ms Worker Thread = 1, sum = 2 ms Worker Thread = 1, sum = 19 ms Worker Thread = 2, sum = 4 ms Worker Thread = 2, sum = 24 ms Main Thread = 0, sum = 24 ms */
void test5_fix() { int array[8] = {0,1,2,3,4,5,6,7}; int sum = 0; /* sum須要私有才能實現並行化,可是又必須是公有的才能產生正確結果; sum公有或者私有都不對,爲了解決這個問題,OpenMP提供了reduction語句. 內部實現中,OpenMP爲每一個線程提供了私有的sum變量(初始化爲0), 當線程退出時,OpenMP再把每一個線程私有的sum加在一塊兒獲得最終結果。 */ omp_set_num_threads(4); #pragma omp parallel for reduction(+:sum) //#pragma omp parallel for // ERROR for (int i = 0; i < 8; i++) { sum += array[i]; printf("Worker Thread = %d, sum = %d ms\n",omp_get_thread_num(), sum); } printf("Main Thread = %d, sum = %d ms\n",omp_get_thread_num(), sum); } /* Worker Thread = 0, sum = 0 ms Worker Thread = 0, sum = 1 ms Worker Thread = 1, sum = 2 ms Worker Thread = 1, sum = 5 ms Worker Thread = 3, sum = 6 ms Worker Thread = 3, sum = 13 ms Worker Thread = 2, sum = 4 ms Worker Thread = 2, sum = 9 ms Main Thread = 0, sum = 28 ms */
void test6() { // `num_threads(4)` same as `omp_set_num_threads(4)` #pragma omp parallel num_threads(4) { printf("Hello, I am Thread %d\n", omp_get_thread_num()); // 0,1,2,3, } } /* Hello, I am Thread 0 Hello, I am Thread 2 Hello, I am Thread 3 Hello, I am Thread 1 */
void test7_1() { omp_set_num_threads(4); // static, num_loop/num_threads #pragma omp parallel for schedule(static,2) for (int i = 0; i < 8; i++) { printf("i = %d, I am Thread %d\n", i, omp_get_thread_num()); } } /* i = 2, I am Thread 1 i = 3, I am Thread 1 i = 6, I am Thread 3 i = 7, I am Thread 3 i = 4, I am Thread 2 i = 5, I am Thread 2 i = 0, I am Thread 0 i = 1, I am Thread 0 */
void test7_2() { omp_set_num_threads(4); // static, num_loop/num_threads #pragma omp parallel for schedule(static,4) for (int i = 0; i < 8; i++) { printf("i = %d, I am Thread %d\n", i, omp_get_thread_num()); } } /* i = 0, I am Thread 0 i = 1, I am Thread 0 i = 2, I am Thread 0 i = 3, I am Thread 0 i = 4, I am Thread 1 i = 5, I am Thread 1 i = 6, I am Thread 1 i = 7, I am Thread 1 */
void test7_3() { omp_set_num_threads(4); // dynamic #pragma omp parallel for schedule(dynamic,1) for (int i = 0; i < 8; i++) { printf("i = %d, I am Thread %d\n", i, omp_get_thread_num()); } } /* i = 0, I am Thread 2 i = 4, I am Thread 2 i = 5, I am Thread 2 i = 6, I am Thread 2 i = 7, I am Thread 2 i = 3, I am Thread 3 i = 1, I am Thread 0 i = 2, I am Thread 1 */
void test7_4() { omp_set_num_threads(4); // dynamic #pragma omp parallel for schedule(dynamic,3) for (int i = 0; i < 8; i++) { printf("i = %d, I am Thread %d\n", i, omp_get_thread_num()); } } /* i = 0, I am Thread 0 i = 1, I am Thread 0 i = 2, I am Thread 0 i = 6, I am Thread 2 i = 7, I am Thread 2 i = 3, I am Thread 1 i = 4, I am Thread 1 i = 5, I am Thread 1 */
#define NUM 100000000 int isprime( int x ) { for( int y = 2; y * y <= x; y++ ) { if( x % y == 0 ) return 0; } return 1; } void test8() { int sum = 0; #pragma omp parallel for reduction (+:sum) schedule(dynamic,1) for( int i = 2; i <= NUM ; i++ ) { sum += isprime(i); } printf( "Number of primes numbers: %d", sum ); }
Number of primes numbers: 5761455./demo_openmp 151.64s user 0.04s system 582% cpu 26.048 total
Number of primes numbers: 5761455./demo_openmp 111.13s user 0.00s system 399% cpu 27.799 total
Number of primes numbers: 5761455./demo_openmp 167.22s user 0.02s system 791% cpu 21.135 total
Number of primes numbers: 5761455./demo_openmp 165.96s user 0.02s system 791% cpu 20.981 total
see how-opencv-use-openmp-thread-to-get-performance
3 type OpenCV implementation
With CMake-gui, BuildingOpenCV
with theWITH_OPENMP
flag means that the internal functions will useOpenMP
to parallelize some of the algorithms, likecvCanny
,cvSmooth
andcvThreshold
.In OpenCV, an algorithm can have a
sequential (slowest) implementation
; aparallel implementation
usingOpenMP
orTBB
; and aGPU implementation
usingOpenCL
orCUDA
(fastest). You can decide with theWITH_XXX
flags which version to use.Of course, not every algorithm can be parallelized.
Now, if you want to parallelize your methods with OpenMP, you have to implement it yourself.
avoiding extra copying
from improving-image-processing-speed
There is one important thing about increasing speed in OpenCV not related to processor nor algorithm and it is avoiding extra copying when dealing with matrices. I will give you an example taken from the documentation:"...by constructing a header for a part of another matrix. It can be a single row, single column, several rows, several columns, rectangular region in the matrix (called a minor in algebra) or a diagonal. Such operations are also O(1), because the new header will reference the same data. You can actually modify a part of the matrix using this feature, e.g."
#include "opencv2/highgui/highgui.hpp" #include "opencv2/features2d/features2d.hpp" #include <iostream> #include <vector> #include <omp.h> void opencv_vector() { int imNum = 2; std::vector<cv::Mat> imVec(imNum); std::vector<std::vector<cv::KeyPoint>>keypointVec(imNum); std::vector<cv::Mat> descriptorsVec(imNum); cv::Ptr<cv::ORB> detector = cv::ORB::create(); cv::Ptr<DescriptorMatcher> matcher = cv::DescriptorMatcher::create("BruteForce-Hamming"); std::vector< cv::DMatch > matches; char filename[100]; double t1 = omp_get_wtime(); //#pragma omp parallel for for (int i=0;i<imNum;i++){ sprintf(filename,"rgb%d.jpg",i); imVec[i] = cv::imread( filename, CV_LOAD_IMAGE_GRAYSCALE ); detector->detect( imVec[i], keypointVec[i] ); detector->compute( imVec[i],keypointVec[i],descriptorsVec[i]); std::cout<<"find "<<keypointVec[i].size()<<" keypoints in im"<<i<<std::endl; } double t2 = omp_get_wtime(); std::cout<<"time: "<<t2-t1<<std::endl; matcher->match(descriptorsVec[0], descriptorsVec[1], matches, 2); // uchar descriptor Mat cv::Mat img_matches; cv::drawMatches( imVec[0], keypointVec[0], imVec[1], keypointVec[1], matches, img_matches ); cv::namedWindow("Matches",CV_WINDOW_AUTOSIZE); cv::imshow( "Matches", img_matches ); cv::waitKey(0); }
#pragma omp parallel sections { #pragma omp section { std::cout<<"processing im0"<<std::endl; im0 = cv::imread("rgb0.jpg", CV_LOAD_IMAGE_GRAYSCALE ); detector.detect( im0, keypoints0); extractor.compute( im0,keypoints0,descriptors0); std::cout<<"find "<<keypoints0.size()<<"keypoints in im0"<<std::endl; } #pragma omp section { std::cout<<"processing im1"<<std::endl; im1 = cv::imread("rgb1.jpg", CV_LOAD_IMAGE_GRAYSCALE ); detector.detect( im1, keypoints1); extractor.compute( im1,keypoints1,descriptors1); std::cout<<"find "<<keypoints1.size()<<"keypoints in im1"<<std::endl; } }