TensorFlow Saver 保存最佳模型 tf.train.Saver Save Best Model

 

TensorFlow Saver 保存最佳模型 tf.train.Saver Save Best Model

Checkmate is designed to be a simple drop-in solution for a very common Tensorflow use-case: keeping track of the best model checkpoints during training.python

The BestCheckpointSaver is a wrapper around a tf.train.Saver.git

The BestCheckpointSaver provides the ability to save the best n checkpoints, whereas the tf.train.Saver can only save the last n checkpoints.github

Features

  • Save only best n checkpoints
  • Compares checkpoints based on a user-provided value
  • Can rank checkpoints by highest or lowest values
  • Automatically delete outdated checkpoints
  • Provide at a glance record of each checkpoint's associated value (the user-provided value obtained from that checkpoint)

Using the BestCheckpointSaver

from checkmate import BestCheckpointSaver # ...build model...
 best_ckpt_saver = BestCheckpointSaver( save_dir=best_checkpoint_dir, num_to_keep=3, maximize=True ) # train and evaluate
for train_step in range(max_steps): sess.run(train_op) if train_step % evaluation_interval == 0: accuracy = sess.run(eval_op, feed_dict=validation_data) best_ckpt_saver.handle(accuracy, sess, global_step_tensor)

Loading the best checkpoint

import checkmate # ...build model...
 saver = tf.train.Saver() saver.restore(sess, checkmate.get_best_checkpoint(best_checkpoint_dir, select_maximum_value=True))

At this stage, the module is no-frills with limited documentation. It is not intended to work in distributed settings or with complex Session/Graph management (i.e. the tf.Estimator framework). Contributions are welcome.api

 

 

 

相關文章
相關標籤/搜索