Pandas DataFrame構造簡析

參考書籍:《利用Python進行數據分析》python

DataFrame簡介:數組

  DataFrame是一個表格型的數據結構,它含有一組有序的列,每列能夠是不一樣的值類型(數值、字符串、布爾值等)。DataFrame既有行索引也有列索引,它能夠被看作由Series組成的字典(共用同一個索引)。跟其餘相似的數據結構相比(如R的data.frame),DataFrame中面向行和麪向列的操做基本上是平衡的。其實,DataFrame中的數據是以一個或多個二維塊存放的(而不是列表、字典或別的一維數據結構)。數據結構

  導入python庫:spa

import numpy as np
import pandas as pd

 

DataFrame構造:code

  1:直接傳入一個由等長列表或NumPy數組組成的字典;blog

dict = {
    "key1": value1;
    "key2": value2;
    "key3": value3;

}

  注意:key 會被解析爲列數據,value 會被解析爲行數據。排序

>>> data = {
...     'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'],
...     'year': [2000, 2001, 2002, 2001, 2002],
...     'pop': [1.5, 1.7, 3.6, 2.4, 2.9]
... }

>>> pd.DataFrame(data)
   pop   state  year
0  1.5    Ohio  2000
1  1.7    Ohio  2001
2  3.6    Ohio  2002
3  2.4  Nevada  2001
4  2.9  Nevada  2002

   主動指定列排序方式:索引

>>> pd.DataFrame(data, columns=['year', 'state', 'pop'])
   year   state  pop
0  2000    Ohio  1.5
1  2001    Ohio  1.7
2  2002    Ohio  3.6
3  2001  Nevada  2.4
4  2002  Nevada  2.9

  此處 0-1位自動生成的列索引,固然了也能夠主動指定。three

>>> pd.DataFrame(data, columns=['year', 'state', 'pop'], index=['one', 'two', 'three', 'four', 'five'])
       year   state  pop
one    2000    Ohio  1.5
two    2001    Ohio  1.7
three  2002    Ohio  3.6
four   2001  Nevada  2.4
five   2002  Nevada  2.9

  須要注意的是:將列表或數組賦值給某個列時,其長度必須跟DataFrame的長度相匹配!!不然會報ValueError。字符串

>>> pd.DataFrame(data, columns=['year', 'state', 'pop'], index=['one', 'two', 'three', 'four']) 
ValueError: Shape of passed values
is (3, 5), indices imply (3, 4)

  2:傳入一個由嵌套的字典;

  它就會被解釋爲:外層字典的鍵做爲列,內層鍵則做爲行索引。

>>> dict = {
...     "key1": {
...         "subkey1": 1,
...         "subkey2": 2,
...         "subkey3": 3,
...     },
...     "key2": {
...         "subkey1": 4,
...         "subkey2": 5,
...         "subkey3": 6,
...     },
...     "key3": {
...         "subkey1": 7,
...         "subkey2": 8,
...         "subkey3": 9,
...     },
... }
>>> pd.DataFrame(dict)
         key1  key2  key3
subkey1     1     4     7
subkey2     2     5     8
subkey3     3     6     9

  請務必保證嵌套字典的key的一致性,否則的話,數據會異常,但不會顯式的報錯,而是顯示出NaN,

>>> dict = {
...     "key1": {
...         "subkey1111111111111111": 1,
...         "subkey2": 2,
...         "subkey3": 3,
...     },
...     "key2": {
...         "subkey1": 4,
...         "subkey2": 5,
...         "subkey3": 6,
...     },
...     "key3": {
...         "subkey1": 7,
...         "subkey2": 8,
...         "subkey3": 9,
...     },
... }
>>> pd.DataFrame(dict)
                        key1  key2  key3
subkey1                  NaN   4.0   7.0
subkey1111111111111111   1.0   NaN   NaN
subkey2                  2.0   5.0   8.0
subkey3                  3.0   6.0   9.0

  3:傳入一個二維nd.array;

>>> s = [[1,2],[3,4]]
>>> np.array(s)
array([[1, 2], 
    [3, 4]])
>>> pd.DataFrame(np.array(s))
 0 1 0 1 2 1 3 4

  固然了你也能夠主動指定行和列索引(不贅述):

>>> pd.DataFrame(np.array(s),index=['one', 'two'], columns=['year', 'state'])
     year  state
one     1      2
two     3      4

  4:傳入其餘的數據(初始化方式基本相似);

相關文章
相關標籤/搜索