(1)使用CompositeInputFormat鏈接類須要知足三個條件:html
1)兩個數據集都是大的數據集,不能用緩存文件的方式。java
2)數據集都是按照相同的鍵進行排序;apache
3)數據集有相同的分區數,同一個鍵的全部記錄在同一個分區中,輸出文件不可分割;api
要知足這三個條件,輸入數據在達到map端鏈接函數以前,兩個數據集被reduce處理,reduce任務數量相同都爲n,兩個數據集被分區輸出到n個文件,同一個鍵的全部記錄在同一個分區中,且數據集中的數據都是按照鏈接鍵進行排序的。reduce數量相同、鍵相同且都是按鍵排序、輸出文件是不可切分的(小於一個HDFS塊,或經過gzip壓縮實現),則就知足map端鏈接的前提條件。利用org.apach.hadoop.mapreduce.join包中的CompositeInputFormat類來運行一個map端鏈接。緩存
(2)CompositeInputFormat類簡介app
CompositeInputFormat類的做用就將job的輸入格式設置爲job.setInputFormatClass(CompositeInputFormat.class);同時經過conf的set(String name, String value)方法設置兩個數據集的鏈接表達式,表達式內容包括三個要素:鏈接方式(inner、outer、override、tbl等) ,讀取兩個數據集的輸入方式,兩個數據集的路徑。這三個要素按照必定的格式組織成字符串做爲表達式設置到conf中。ide
//設置輸入格式爲 CompositeInputFormat
job.setInputFormatClass(CompositeInputFormat.class);
//conf設置鏈接的表達式public static final String JOIN_EXPR = "mapreduce.join.expr";
Configuration conf = job.getConfiguration();
conf.set(CompositeInputFormat.JOIN_EXPR, CompositeInputFormat.compose(
"inner", KeyValueTextInputFormat.class,
FileInputFormat.getInputPaths(job)));
//等價轉換以後就是以下表達式
//conf.set("mapreduce.join.expr", CompositeInputFormat.compose(
// "inner", KeyValueTextInputFormat.class, userPath,commentPath));
CompositeInputFormat類的源碼以下函數
// // Source code recreated from a .class file by IntelliJ IDEA // (powered by Fernflower decompiler) // package org.apache.hadoop.mapreduce.lib.join; import java.io.IOException; import java.util.ArrayList; import java.util.Iterator; import java.util.List; import java.util.Map.Entry; import java.util.regex.Matcher; import java.util.regex.Pattern; import org.apache.hadoop.classification.InterfaceAudience.Public; import org.apache.hadoop.classification.InterfaceStability.Stable; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.WritableComparable; import org.apache.hadoop.mapreduce.InputFormat; import org.apache.hadoop.mapreduce.InputSplit; import org.apache.hadoop.mapreduce.JobContext; import org.apache.hadoop.mapreduce.RecordReader; import org.apache.hadoop.mapreduce.TaskAttemptContext; import org.apache.hadoop.mapreduce.lib.join.Parser.CNode; import org.apache.hadoop.mapreduce.lib.join.Parser.Node; import org.apache.hadoop.mapreduce.lib.join.Parser.WNode; @Public @Stable public class CompositeInputFormat<K extends WritableComparable> extends InputFormat<K, TupleWritable> { public static final String JOIN_EXPR = "mapreduce.join.expr"; public static final String JOIN_COMPARATOR = "mapreduce.join.keycomparator"; private Node root; public CompositeInputFormat() { } public void setFormat(Configuration conf) throws IOException { this.addDefaults(); this.addUserIdentifiers(conf); this.root = Parser.parse(conf.get("mapreduce.join.expr", (String)null), conf); } protected void addDefaults() { try {//有默認的四種鏈接方式,每種鏈接方式都有對應的Reader CNode.addIdentifier("inner", InnerJoinRecordReader.class); CNode.addIdentifier("outer", OuterJoinRecordReader.class); CNode.addIdentifier("override", OverrideRecordReader.class); WNode.addIdentifier("tbl", WrappedRecordReader.class); } catch (NoSuchMethodException var2) { throw new RuntimeException("FATAL: Failed to init defaults", var2); } } private void addUserIdentifiers(Configuration conf) throws IOException { Pattern x = Pattern.compile("^mapreduce\\.join\\.define\\.(\\w+)$"); Iterator i$ = conf.iterator(); while(i$.hasNext()) { Entry<String, String> kv = (Entry)i$.next(); Matcher m = x.matcher((CharSequence)kv.getKey()); if (m.matches()) { try { CNode.addIdentifier(m.group(1), conf.getClass(m.group(0), (Class)null, ComposableRecordReader.class)); } catch (NoSuchMethodException var7) { throw new IOException("Invalid define for " + m.group(1), var7); } } } } public List<InputSplit> getSplits(JobContext job) throws IOException, InterruptedException { this.setFormat(job.getConfiguration()); job.getConfiguration().setLong("mapreduce.input.fileinputformat.split.minsize", 9223372036854775807L); return this.root.getSplits(job); } public RecordReader<K, TupleWritable> createRecordReader(InputSplit split, TaskAttemptContext taskContext) throws IOException, InterruptedException { this.setFormat(taskContext.getConfiguration()); return this.root.createRecordReader(split, taskContext); } //按格式組織鏈接表達式 public static String compose(Class<? extends InputFormat> inf, String path) { return compose(inf.getName().intern(), path, new StringBuffer()).toString(); } //鏈接方式(inner、outer、override、tbl等) 、讀取兩個數據集的輸入方式、兩個數據集的路徑 public static String compose(String op, Class<? extends InputFormat> inf, String... path) { String infname = inf.getName();//org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat StringBuffer ret = new StringBuffer(op + '('); String[] arr$ = path; int len$ = path.length; for(int i$ = 0; i$ < len$; ++i$) { String p = arr$[i$]; compose(infname, p, ret); ret.append(','); } ret.setCharAt(ret.length() - 1, ')'); return ret.toString(); } public static String compose(String op, Class<? extends InputFormat> inf, Path... path) { ArrayList<String> tmp = new ArrayList(path.length); Path[] arr$ = path; int len$ = path.length; for(int i$ = 0; i$ < len$; ++i$) { Path p = arr$[i$]; tmp.add(p.toString()); } return compose(op, inf, (String[])tmp.toArray(new String[0])); } private static StringBuffer compose(String inf, String path, StringBuffer sb) { sb.append("tbl(" + inf + ",\""); sb.append(path); sb.append("\")"); return sb; } }
其中主要的函數就是compose函數,他是一個重載函數:oop
public static String compose(String op, Class<? extends InputFormat> inf, String... path);this
op表示鏈接類型(inner、outer、override、tbl),inf表示數據集的輸入方式,path表示輸入數據集的文件路徑。這個函數的做用是將傳入的表達式三要素:鏈接方式(inner、outer、override、tbl等) 、讀取兩個數據集的輸入方式、兩個數據集的路徑組成字符串。假設conf按以下方式傳入三要素:
conf.set("mapreduce.join.expr", CompositeInputFormat.compose(
"inner", KeyValueTextInputFormat.class,「/hdfs/inputpath/userpath」, 「/hdfs/inputpath/commentpath」));
compose函數最終得出的表達式爲:
inner(tbl(org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat,」 /hdfs/inputpath/userpath」),tbl(org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat,」 /hdfs/inputpath/ commentpath」))
如今我只能深刻到這裏,至於爲何要知足三個條件才能夠鏈接?設置表達式以後內部又是如何實現鏈接?有知道的歡迎留言討論。
(3)CompositeInputFormat實現map端鏈接的實例
成績數據和名字數據經過CompositeInputFormat實現map鏈接
成績數據:
1,yuwen,100
1,shuxue,99
2,yuwen,99
2,shuxue,88
3,yuwen,99
3,shuxue,56
4,yuwen,33
4,shuxue,99名字數據:
1,yaoshuya,25
2,yaoxiaohua,29
3,yaoyuanyie,15
4,yaoshupei,26
文件夾定義以下:
代碼:
package Temperature; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.FileUtil; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat; import org.apache.hadoop.mapreduce.lib.join.CompositeInputFormat; import org.apache.hadoop.mapreduce.lib.join.TupleWritable; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; import java.io.File; import java.io.IOException; public class CompositeJoin extends Configured implements Tool { private static class CompositeJoinMapper extends Mapper<Text, TupleWritable,Text,TupleWritable> { @Override protected void map(Text key, TupleWritable value, Context context) throws IOException, InterruptedException { context.write(key,value); } } public int run(String[] args) throws Exception { Path userPath = new Path(args[0]); Path commentPath = new Path(args[1]); Path output = new Path(args[2]); Job job=null; try { job = new Job(getConf(), "mapinnerjoin"); } catch (IOException e) { e.printStackTrace(); } job.setJarByClass(getClass()); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(TupleWritable.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(TupleWritable.class); // 設置兩個輸入數據集的目錄 FileInputFormat.addInputPaths(job, args[0]); FileInputFormat.addInputPaths(job, args[1]); //設置輸出目錄 FileOutputFormat.setOutputPath(job,output); Configuration conf = job.getConfiguration(); //設置輸入格式爲 CompositeInputFormat job.setInputFormatClass(CompositeInputFormat.class); conf.set("mapreduce.input.keyvaluelinerecordreader.key.value.separator", ","); //conf設置鏈接的表達式public static final String JOIN_EXPR = "mapreduce.join.expr"; //conf.set(CompositeInputFormat.JOIN_EXPR, CompositeInputFormat.compose( // "inner", KeyValueTextInputFormat.class, // FileInputFormat.getInputPaths(job))); //等價轉換以後就是以下表達式 String strExpretion=CompositeInputFormat.compose("inner", KeyValueTextInputFormat.class, userPath,commentPath); conf.set("mapreduce.join.expr",strExpretion ); job.setOutputFormatClass(TextOutputFormat.class); job.setNumReduceTasks(0);//map端鏈接,reduce爲0,不使用reduce job.setMapperClass(CompositeJoinMapper.class); //鍵值屬性分隔符設置爲空格 //刪除結果目錄,從新生成 FileUtil.fullyDelete(new File(args[2])); return job.waitForCompletion(true)?0:1; } public static void main(String[] args) throws Exception { //三個參數,兩個鏈接的數據路徑,一個輸出路徑 int exitCode= ToolRunner.run(new CompositeJoin(),args); System.exit(exitCode); } }
設置run->edit Configuration設置輸入輸出路徑,兩個輸入,一個輸出
運行該類的main函數獲得結果
本身開發了一個股票智能分析軟件,功能很強大,須要的點擊下面的連接獲取: