Kubernetes v1.10.x+HA 全手動安裝教程

本篇延續過往手動安裝方式來部署 Kubernetes v1.10.x 版本的 High Availability 集羣,主要目的是學習 Kubernetes 安裝的一些元件關析與流程。若不想這麼累的話,能夠參考 Picking the Right Solution 來選擇本身最喜歡的方式。html

本次安裝的軟件版本:node

  • Kubernetes v1.10.0
  • CNI v0.6.0
  • Etcd v3.1.13
  • Calico v3.0.4
  • Docker CE latest version

節點信息

本教學將如下列節點數與規格來進行部署 Kubernetes 集羣,操做系統可採用Ubuntu 16.x與CentOS 7.x:linux

IP Address Hostname CPU Memory
192.16.35.11 k8s-m1 1 4G
192.16.35.12 k8s-m2 1 4G
192.16.35.13 k8s-m3 1 4G
192.16.35.14 k8s-n1 1 4G
192.16.35.15 k8s-n2 1 4G
192.16.35.16 k8s-n2 1 4G

 

另外由全部 master 節點提供一組 VIP 192.16.35.10。nginx

  • 這邊m爲主要控制節點,n爲應用程序工做節點。
  • 全部操做所有用root使用者進行(方便用),以 SRE 來講不推薦。
  • 能夠下載Vagrantfile 來創建 Virtualbox 虛擬機集羣。不過須要注意機器資源是否足夠。

事前準備

開始安裝前須要確保如下條件已達成:git

  • 全部節點彼此網絡互通,而且k8s-m1SSH 登入其餘節點爲 passwdless。
  • 全部防火牆與 SELinux 已關閉。如 CentOS:
$ systemctl stop firewalld && systemctl disable firewalld
$ setenforce 0
$ vim /etc/selinux/config
SELINUX=disabled
  • 全部節點須要設定/etc/hosts解析到全部集羣主機。
...
192.16.35.11 k8s-m1
192.16.35.12 k8s-m2
192.16.35.13 k8s-m3
192.16.35.14 k8s-n1
192.16.35.15 k8s-n2
192.16.35.16 k8s-n3
  • 全部節點須要安裝 Docker CE 版本的容器引擎:
$ curl -fsSL "https://get.docker.com/" | sh

不論是在 Ubuntu 或 CentOS 都只須要執行該指令就會自動安裝最新版 Docker。
CentOS 安裝完成後,須要再執行如下指令:github

$ systemctl enable docker && systemctl start docker

全部節點須要設定/etc/sysctl.d/k8s.conf的系統參數。docker

$ cat <<EOF > /etc/sysctl.d/k8s.conf
net.ipv4.ip_forward = 1
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
EOF

$ sysctl -p /etc/sysctl.d/k8s.conf
  • Kubernetes v1.8+ 要求關閉系統 Swap,若不關閉則須要修改 kubelet 設定參數,在全部節點利用如下指令關閉:
$ swapoff -a && sysctl -w vm.swappiness=0

記得/etc/fstab也要註解掉SWAP掛載。json

  • 在全部節點下載 Kubernetes 二進制執行檔:
$ export KUBE_URL="https://storage.googleapis.com/kubernetes-release/release/v1.10.0/bin/linux/amd64"
$ wget "${KUBE_URL}/kubelet" -O /usr/local/bin/kubelet
$ chmod +x /usr/local/bin/kubelet

# node 請忽略下載 kubectl
$ wget "${KUBE_URL}/kubectl" -O /usr/local/bin/kubectl
$ chmod +x /usr/local/bin/kubectl
  • 在全部節點下載 Kubernetes CNI 二進制文件:
$ mkdir -p /opt/cni/bin && cd /opt/cni/bin
$ export CNI_URL="https://github.com/containernetworking/plugins/releases/download"
$ wget -qO- --show-progress "${CNI_URL}/v0.6.0/cni-plugins-amd64-v0.6.0.tgz" | tar -zx
  • 在k8s-m1須要安裝CFSSL工具,這將會用來創建 TLS Certificates。
$ export CFSSL_URL="https://pkg.cfssl.org/R1.2"
$ wget "${CFSSL_URL}/cfssl_linux-amd64" -O /usr/local/bin/cfssl
$ wget "${CFSSL_URL}/cfssljson_linux-amd64" -O /usr/local/bin/cfssljson
$ chmod +x /usr/local/bin/cfssl /usr/local/bin/cfssljson

創建集羣 CA keys 與 Certificates

在這個部分,將須要產生多個元件的 Certificates,這包含 Etcd、Kubernetes 元件等,而且每一個集羣都會有一個根數位憑證認證機構(Root Certificate Authority)被用在認證 API Server 與 Kubelet 端的憑證。bootstrap

P.S. 這邊要注意 CA JSON 檔的CN(Common Name)與O(Organization)等內容是會影響 Kubernetes 元件認證的。vim

Etcd

首先在k8s-m1創建/etc/etcd/ssl資料夾,而後進入目錄完成如下操做。

$ mkdir -p /etc/etcd/ssl && cd /etc/etcd/ssl
$ export PKI_URL="https://kairen.github.io/files/manual-v1.10/pki"

下載ca-config.json與etcd-ca-csr.json文件,並從 CSR json 產生 CA keys 與 Certificate:

$ wget "${PKI_URL}/ca-config.json" "${PKI_URL}/etcd-ca-csr.json"
$ cfssl gencert -initca etcd-ca-csr.json | cfssljson -bare etcd-ca

下載etcd-csr.json文件,併產生 Etcd 證書:

$ wget "${PKI_URL}/etcd-csr.json"

$ cfssl gencert \
  -ca=etcd-ca.pem \
  -ca-key=etcd-ca-key.pem \
  -config=ca-config.json \
  -hostname=127.0.0.1,192.16.35.11,192.16.35.12,192.16.35.13 \
  -profile=kubernetes \
  etcd-csr.json | cfssljson -bare etcd

-hostname需修改爲全部 masters 節點。

完成後刪除沒必要要文件:

$ rm -rf *.json *.csr

確認/etc/etcd/ssl有如下文件:

$ ls /etc/etcd/ssl
etcd-ca-key.pem  etcd-ca.pem  etcd-key.pem  etcd.pem

複製相關文件至其餘 Etcd 節點,這邊爲全部master節點:

$ for NODE in k8s-m2 k8s-m3; do
    echo "--- $NODE ---"
    ssh ${NODE} "mkdir -p /etc/etcd/ssl"
    for FILE in etcd-ca-key.pem  etcd-ca.pem  etcd-key.pem  etcd.pem; do
      scp /etc/etcd/ssl/${FILE} ${NODE}:/etc/etcd/ssl/${FILE}
    done
  done

Kubernetes

在k8s-m1創建pki資料夾,而後進入目錄完成如下章節操做。

$ mkdir -p /etc/kubernetes/pki && cd /etc/kubernetes/pki
$ export PKI_URL="https://kairen.github.io/files/manual-v1.10/pki"
$ export KUBE_APISERVER="https://192.16.35.10:6443"

下載ca-config.json與ca-csr.json文件,併產生 CA 金鑰:

$ wget "${PKI_URL}/ca-config.json" "${PKI_URL}/ca-csr.json"
$ cfssl gencert -initca ca-csr.json | cfssljson -bare ca
$ ls ca*.pem
ca-key.pem  ca.pem

API Server Certificate

下載apiserver-csr.json文件,併產生 kube-apiserver 憑證:

$ wget "${PKI_URL}/apiserver-csr.json"

$ cfssl gencert \
  -ca=ca.pem \
  -ca-key=ca-key.pem \
  -config=ca-config.json \
  -hostname=10.96.0.1,192.16.35.10,127.0.0.1,kubernetes.default \
  -profile=kubernetes \
  apiserver-csr.json | cfssljson -bare apiserver

$ ls apiserver*.pem
apiserver-key.pem  apiserver.pem
  • 這邊-hostname的96.0.1是 Cluster IP 的 Kubernetes 端點;
  • 16.35.10爲虛擬 IP 位址(VIP);
  • default爲 Kubernetes DN。

Front Proxy Certificate

下載front-proxy-ca-csr.json文件,併產生 Front Proxy CA 金鑰,Front Proxy 主要是用在 API aggregator 上:

$ wget "${PKI_URL}/front-proxy-ca-csr.json"
$ cfssl gencert \
  -initca front-proxy-ca-csr.json | cfssljson -bare front-proxy-ca

$ ls front-proxy-ca*.pem
front-proxy-ca-key.pem  front-proxy-ca.pem

下載front-proxy-client-csr.json文件,併產生 front-proxy-client 證書:

$ wget "${PKI_URL}/front-proxy-client-csr.json"

$ cfssl gencert \
  -ca=front-proxy-ca.pem \
  -ca-key=front-proxy-ca-key.pem \
  -config=ca-config.json \
  -profile=kubernetes \
  front-proxy-client-csr.json | cfssljson -bare front-proxy-client

$ ls front-proxy-client*.pem
front-proxy-client-key.pem  front-proxy-client.pem

Admin Certificate

下載admin-csr.json文件,併產生 admin certificate 憑證:

$ wget "${PKI_URL}/admin-csr.json"

$ cfssl gencert \
  -ca=ca.pem \
  -ca-key=ca-key.pem \
  -config=ca-config.json \
  -profile=kubernetes \
  admin-csr.json | cfssljson -bare admin

$ ls admin*.pem
admin-key.pem  admin.pem

接着經過如下指令產生名稱爲 admin.conf 的 kubeconfig 檔:

# admin set cluster
$ kubectl config set-cluster kubernetes \
    --certificate-authority=ca.pem \
    --embed-certs=true \
    --server=${KUBE_APISERVER} \
    --kubeconfig=../admin.conf

# admin set credentials
$ kubectl config set-credentials kubernetes-admin \
    --client-certificate=admin.pem \
    --client-key=admin-key.pem \
    --embed-certs=true \
    --kubeconfig=../admin.conf

# admin set context
$ kubectl config set-context kubernetes-admin@kubernetes \
    --cluster=kubernetes \
    --user=kubernetes-admin \
    --kubeconfig=../admin.conf

# admin set default context
$ kubectl config use-context kubernetes-admin@kubernetes \
    --kubeconfig=../admin.conf

Controller Manager Certificate

下載manager-csr.json文件,併產生 kube-controller-manager certificate 憑證:

$ wget "${PKI_URL}/manager-csr.json"

$ cfssl gencert \
  -ca=ca.pem \
  -ca-key=ca-key.pem \
  -config=ca-config.json \
  -profile=kubernetes \
  manager-csr.json | cfssljson -bare controller-manager

$ ls controller-manager*.pem
controller-manager-key.pem  controller-manager.pem

若節點 IP 不一樣,須要修改manager-csr.json的hosts。

接着經過如下指令產生名稱爲controller-manager.conf的 kubeconfig 檔:

# controller-manager set cluster
$ kubectl config set-cluster kubernetes \
    --certificate-authority=ca.pem \
    --embed-certs=true \
    --server=${KUBE_APISERVER} \
    --kubeconfig=../controller-manager.conf

# controller-manager set credentials
$ kubectl config set-credentials system:kube-controller-manager \
    --client-certificate=controller-manager.pem \
    --client-key=controller-manager-key.pem \
    --embed-certs=true \
    --kubeconfig=../controller-manager.conf

# controller-manager set context
$ kubectl config set-context system:kube-controller-manager@kubernetes \
    --cluster=kubernetes \
    --user=system:kube-controller-manager \
    --kubeconfig=../controller-manager.conf

# controller-manager set default context
$ kubectl config use-context system:kube-controller-manager@kubernetes \
    --kubeconfig=../controller-manager.conf

Scheduler Certificate

下載scheduler-csr.json文件,併產生 kube-scheduler certificate 憑證:

$ wget "${PKI_URL}/scheduler-csr.json"

$ cfssl gencert \
  -ca=ca.pem \
  -ca-key=ca-key.pem \
  -config=ca-config.json \
  -profile=kubernetes \
  scheduler-csr.json | cfssljson -bare scheduler

$ ls scheduler*.pem
scheduler-key.pem  scheduler.pem

若節點 IP 不一樣,須要修改scheduler-csr.json的hosts。

接着經過如下指令產生名稱爲 scheduler.conf 的 kubeconfig 檔:

# scheduler set cluster
$ kubectl config set-cluster kubernetes \
    --certificate-authority=ca.pem \
    --embed-certs=true \
    --server=${KUBE_APISERVER} \
    --kubeconfig=../scheduler.conf

# scheduler set credentials
$ kubectl config set-credentials system:kube-scheduler \
    --client-certificate=scheduler.pem \
    --client-key=scheduler-key.pem \
    --embed-certs=true \
    --kubeconfig=../scheduler.conf

# scheduler set context
$ kubectl config set-context system:kube-scheduler@kubernetes \
    --cluster=kubernetes \
    --user=system:kube-scheduler \
    --kubeconfig=../scheduler.conf

# scheduler use default context
$ kubectl config use-context system:kube-scheduler@kubernetes \
    --kubeconfig=../scheduler.conf

Master Kubelet Certificate

接着在全部k8s-m1節點下載kubelet-csr.json文件,併產生憑證:

$ wget "${PKI_URL}/kubelet-csr.json"

$ for NODE in k8s-m1 k8s-m2 k8s-m3; do
    echo "--- $NODE ---"
    cp kubelet-csr.json kubelet-$NODE-csr.json;
    sed -i "s/\$NODE/$NODE/g" kubelet-$NODE-csr.json;
    cfssl gencert \
      -ca=ca.pem \
      -ca-key=ca-key.pem \
      -config=ca-config.json \
      -hostname=$NODE \
      -profile=kubernetes \
      kubelet-$NODE-csr.json | cfssljson -bare kubelet-$NODE
  done

$ ls kubelet*.pem
kubelet-k8s-m1-key.pem  kubelet-k8s-m1.pem  kubelet-k8s-m2-key.pem  kubelet-k8s-m2.pem  kubelet-k8s-m3-key.pem  kubelet-k8s-m3.pem

這邊須要依據節點修改-hostname與$NODE。

完成後複製 kubelet 憑證至其餘master節點:

$ for NODE in k8s-m2 k8s-m3; do
    echo "--- $NODE ---"
    ssh ${NODE} "mkdir -p /etc/kubernetes/pki"
    for FILE in kubelet-$NODE-key.pem kubelet-$NODE.pem ca.pem; do
      scp /etc/kubernetes/pki/${FILE} ${NODE}:/etc/kubernetes/pki/${FILE}
    done
  done

接着執行如下指令產生名稱爲kubelet.conf的 kubeconfig 檔:

$ for NODE in k8s-m1 k8s-m2 k8s-m3; do
    echo "--- $NODE ---"
    ssh ${NODE} "cd /etc/kubernetes/pki && \
      kubectl config set-cluster kubernetes \
        --certificate-authority=ca.pem \
        --embed-certs=true \
        --server=${KUBE_APISERVER} \
        --kubeconfig=../kubelet.conf && \
      kubectl config set-cluster kubernetes \
        --certificate-authority=ca.pem \
        --embed-certs=true \
        --server=${KUBE_APISERVER} \
        --kubeconfig=../kubelet.conf && \
      kubectl config set-credentials system:node:${NODE} \
        --client-certificate=kubelet-${NODE}.pem \
        --client-key=kubelet-${NODE}-key.pem \
        --embed-certs=true \
        --kubeconfig=../kubelet.conf && \
      kubectl config set-context system:node:${NODE}@kubernetes \
        --cluster=kubernetes \
        --user=system:node:${NODE} \
        --kubeconfig=../kubelet.conf && \
      kubectl config use-context system:node:${NODE}@kubernetes \
        --kubeconfig=../kubelet.conf && \
      rm kubelet-${NODE}.pem kubelet-${NODE}-key.pem"
  done

Service Account Key

Service account 不是經過 CA 進行認證,所以不要經過 CA 來作 Service account key 的檢查,這邊創建一組 Private 與 Public 金鑰提供給 Service account key 使用:

$ openssl genrsa -out sa.key 2048
$ openssl rsa -in sa.key -pubout -out sa.pub
$ ls sa.*
sa.key  sa.pub

刪除沒必要要文件

全部信息準備完成後,就能夠將一些沒必要要文件刪除:

$ rm -rf *.json *.csr scheduler*.pem controller-manager*.pem admin*.pem kubelet*.pem

複製文件至其餘節點

複製憑證文件至其餘master節點:

$ for NODE in k8s-m2 k8s-m3; do
    echo "--- $NODE ---"
    for FILE in $(ls /etc/kubernetes/pki/); do
      scp /etc/kubernetes/pki/${FILE} ${NODE}:/etc/kubernetes/pki/${FILE}
    done
  done

複製 Kubernetes config 文件至其餘master節點:

$ for NODE in k8s-m2 k8s-m3; do
    echo "--- $NODE ---"
    for FILE in admin.conf controller-manager.conf scheduler.conf; do
      scp /etc/kubernetes/${FILE} ${NODE}:/etc/kubernetes/${FILE}
    done
  done

Kubernetes Masters

本部分將說明如何創建與設定 Kubernetes Master 角色,過程當中會部署如下元件:

  • kube-apiserver:提供 REST APIs,包含受權、認證與狀態儲存等。
  • kube-controller-manager:負責維護集羣的狀態,如自動擴展,滾動更新等。
  • kube-scheduler:負責資源排程,依據預約的排程策略將 Pod 分配到對應節點上。
  • Etcd:儲存集羣全部狀態的 Key/Value 儲存系統。
  • HAProxy:提供負載平衡器。
  • Keepalived:提供虛擬網絡位址(VIP)。

部署與設定

首先在全部 master 節點下載部署元件的 YAML 文件,這邊不採用二進制執行檔與 Systemd 來管理這些元件,所有采用 Static Pod 來達成。這邊將文件下載至/etc/kubernetes/manifests目錄:

$ export CORE_URL="https://kairen.github.io/files/manual-v1.10/master"
$ mkdir -p /etc/kubernetes/manifests && cd /etc/kubernetes/manifests

$ for FILE in kube-apiserver kube-controller-manager kube-scheduler haproxy keepalived etcd etcd.config; do
    wget "${CORE_URL}/${FILE}.yml.conf" -O ${FILE}.yml
    if [ ${FILE} == "etcd.config" ]; then
      mv etcd.config.yml /etc/etcd/etcd.config.yml
      sed -i "s/\${HOSTNAME}/${HOSTNAME}/g" /etc/etcd/etcd.config.yml
      sed -i "s/\${PUBLIC_IP}/$(hostname -i)/g" /etc/etcd/etcd.config.yml
    fi
  done

$ ls /etc/kubernetes/manifests
etcd.yml  haproxy.yml  keepalived.yml  kube-apiserver.yml  kube-controller-manager.yml  kube-scheduler.yml
  • 若IP與教學設定不一樣的話,請記得修改 YAML 文件。
  • kube-apiserver 中的NodeRestriction 請參考 Using Node Authorization

產生一個用來加密 Etcd 的 Key:

$ head -c 32 /dev/urandom | base64
SUpbL4juUYyvxj3/gonV5xVEx8j769/99TSAf8YT/sQ=

注意每臺master節點須要用同樣的 Key。

在/etc/kubernetes/目錄下,創建encryption.yml的加密 YAML 文件:

$ cat <<EOF > /etc/kubernetes/encryption.yml
kind: EncryptionConfig
apiVersion: v1
resources:
  - resources:
      - secrets
    providers:
      - aescbc:
          keys:
            - name: key1
              secret: SUpbL4juUYyvxj3/gonV5xVEx8j769/99TSAf8YT/sQ=
      - identity: {}
EOF

Etcd 資料加密可參考這篇 Encrypting data at rest

在/etc/kubernetes/目錄下,創建audit-policy.yml的進階稽覈策略 YAML 檔:

$ cat <<EOF > /etc/kubernetes/audit-policy.yml
apiVersion: audit.k8s.io/v1beta1
kind: Policy
rules:- level: Metadata
EOF

Audit Policy 請參考這篇 Auditing

下載haproxy.cfg文件來提供給 HAProxy 容器使用:

$ mkdir -p /etc/haproxy/
$ wget "${CORE_URL}/haproxy.cfg" -O /etc/haproxy/haproxy.cfg

若與本教學 IP 不一樣的話,請記得修改設定檔。

下載kubelet.service相關文件來管理 kubelet:

$ mkdir -p /etc/systemd/system/kubelet.service.d

$ wget "${CORE_URL}/kubelet.service" -O /lib/systemd/system/kubelet.service
$ wget "${CORE_URL}/10-kubelet.conf" -O /etc/systemd/system/kubelet.service.d/10-kubelet.conf

若 cluster dns或domain有改變的話,須要修改10-kubelet.conf。

最後創建 var 存放信息,而後啓動 kubelet 服務:

$ mkdir -p /var/lib/kubelet /var/log/kubernetes /var/lib/etcd
$ systemctl enable kubelet.service && systemctl start kubelet.service

完成後會須要一段時間來下載鏡像檔與啓動元件,能夠利用該指令來監看:

$ watch netstat -ntlpActive Internet connections (only servers)Proto Recv-Q Send-Q Local Address           Foreign Address         State       PID/Program name
tcp        0      0 127.0.0.1:10248         0.0.0.0:*               LISTEN      10344/kubelet
tcp        0      0 127.0.0.1:10251         0.0.0.0:*               LISTEN      11324/kube-schedule
tcp        0      0 0.0.0.0:6443            0.0.0.0:*               LISTEN      11416/haproxy
tcp        0      0 127.0.0.1:10252         0.0.0.0:*               LISTEN      11235/kube-controll
tcp        0      0 0.0.0.0:9090            0.0.0.0:*               LISTEN      11416/haproxy
tcp6       0      0 :::2379                 :::*                    LISTEN      10479/etcd
tcp6       0      0 :::2380                 :::*                    LISTEN      10479/etcd
tcp6       0      0 :::10255                :::*                    LISTEN      10344/kubelet
tcp6       0      0 :::5443                 :::*                    LISTEN      11295/kube-apiserve

若看到以上信息表示服務正常啓動,若發生問題能夠用docker指令來查看。

驗證集羣

完成後,在任意一臺master節點複製 admin kubeconfig 文件,並經過簡單指令驗證:

$ cp /etc/kubernetes/admin.conf ~/.kube/config

$ kubectl get cs
NAME                 STATUS    MESSAGE              ERROR
controller-manager   Healthy   ok
scheduler            Healthy   ok
etcd-2               Healthy   {"health": "true"}
etcd-1               Healthy   {"health": "true"}
etcd-0               Healthy   {"health": "true"}

$ kubectl get node
NAME      STATUS     ROLES     AGE       VERSION
k8s-m1    NotReady   master    52s       v1.10.0
k8s-m2    NotReady   master    51s       v1.10.0
k8s-m3    NotReady   master    50s       v1.10.0

$ kubectl -n kube-system get po
NAME                             READY     STATUS    RESTARTS   AGE
etcd-k8s-m1                      1/1       Running   0          7s
etcd-k8s-m2                      1/1       Running   0          57s
haproxy-k8s-m3                   1/1       Running   0          1m...

接着確認服務可以執行 logs 等指令:

$ kubectl -n kube-system logs -f kube-scheduler-k8s-m2Error from server (Forbidden): Forbidden (user=kube-apiserver, verb=get, resource=nodes, subresource=proxy) ( pods/log kube-scheduler-k8s-m2)

這邊會發現出現 403 Forbidden 問題,這是由於 kube-apiserver user 並無 nodes 的資源存取權限,屬於正常。

因爲上述權限問題,必需創建一個apiserver-to-kubelet-rbac.yml來定義權限,以供對 Nodes 容器執行 logs、exec 等指令。在任意一臺master節點執行如下指令:

$ kubectl apply -f "${CORE_URL}/apiserver-to-kubelet-rbac.yml.conf"
clusterrole.rbac.authorization.k8s.io "system:kube-apiserver-to-kubelet" configured
clusterrolebinding.rbac.authorization.k8s.io "system:kube-apiserver" configured

# 測試 logs
$ kubectl -n kube-system logs -f kube-scheduler-k8s-m2...
I0403 02:30:36.375935       1 server.go:555] Version: v1.10.0
I0403 02:30:36.378208       1 server.go:574] starting healthz server on 127.0.0.1:10251

# 設定master節點容許 Taint:
$ kubectl taint nodes node-role.kubernetes.io/master="":NoSchedule --all
node "k8s-m1" tainted
node "k8s-m2" tainted
node "k8s-m3" tainted

Taints and Tolerations

創建 TLS Bootstrapping RBAC 與 Secret

因爲本次安裝啓用了 TLS 認證,所以每一個節點的 kubelet 都必須使用 kube-apiserver 的 CA 的憑證後,才能與 kube-apiserver 進行溝通,而該過程須要手動針對每臺節點單獨簽署憑證是一件繁瑣的事情,且一旦節點增長會延伸出管理不易問題; 而 TLS bootstrapping 目標就是解決該問題,經過讓 kubelet 先使用一個預約低權限使用者鏈接到 kube-apiserver,而後在對 kube-apiserver 申請憑證簽署,當受權 Token 一致時,Node 節點的 kubelet 憑證將由 kube-apiserver 動態簽署提供。具體做法能夠參考 TLS Bootstrapping 與 Authenticating with Bootstrap Tokens

首先在k8s-m1創建一個變量來產生BOOTSTRAP_TOKEN,並創建bootstrap-kubelet.conf的 Kubernetes config 檔:

$ cd /etc/kubernetes/pki

$ export TOKEN_ID=$(openssl rand 3 -hex)
$ export TOKEN_SECRET=$(openssl rand 8 -hex)
$ export BOOTSTRAP_TOKEN=${TOKEN_ID}.${TOKEN_SECRET}
$ export KUBE_APISERVER="https://192.16.35.10:6443"

# bootstrap set cluster
$ kubectl config set-cluster kubernetes \
    --certificate-authority=ca.pem \
    --embed-certs=true \
    --server=${KUBE_APISERVER} \
    --kubeconfig=../bootstrap-kubelet.conf

# bootstrap set credentials
$ kubectl config set-credentials tls-bootstrap-token-user \
    --token=${BOOTSTRAP_TOKEN} \
    --kubeconfig=../bootstrap-kubelet.conf

# bootstrap set context
$ kubectl config set-context tls-bootstrap-token-user@kubernetes \
    --cluster=kubernetes \
    --user=tls-bootstrap-token-user \
    --kubeconfig=../bootstrap-kubelet.conf

# bootstrap use default context
$ kubectl config use-context tls-bootstrap-token-user@kubernetes \
    --kubeconfig=../bootstrap-kubelet.conf

若想要用手動簽署憑證來進行受權的話,能夠參考 Certificate

接着在k8s-m1創建 TLS bootstrap secret 來提供自動簽證使用:

$ cat <<EOF | kubectl create -f -
apiVersion: v1
kind: Secret
metadata:
  name: bootstrap-token-${TOKEN_ID}
  namespace: kube-system
type: bootstrap.kubernetes.io/token
stringData:
  token-id: ${TOKEN_ID}
  token-secret: ${TOKEN_SECRET}
  usage-bootstrap-authentication: "true"
  usage-bootstrap-signing: "true"
  auth-extra-groups: system:bootstrappers:default-node-token
EOF

secret "bootstrap-token-65a3a9" created

# 在k8s-m1創建 TLS Bootstrap Autoapprove RBAC:
$ kubectl apply -f "${CORE_URL}/kubelet-bootstrap-rbac.yml.conf"
clusterrolebinding.rbac.authorization.k8s.io "kubelet-bootstrap" created
clusterrolebinding.rbac.authorization.k8s.io "node-autoapprove-bootstrap" created
clusterrolebinding.rbac.authorization.k8s.io "node-autoapprove-certificate-rotation" created

Kubernetes Nodes

本部分將說明如何創建與設定 Kubernetes Node 角色,Node 是主要執行容器實例(Pod)的工做節點。

在開始部署前,先在k8-m1將須要用到的文件複製到全部node節點上:

$ cd /etc/kubernetes/pki

$ for NODE in k8s-n1 k8s-n2 k8s-n3; do
    echo "--- $NODE ---"
    ssh ${NODE} "mkdir -p /etc/kubernetes/pki/"
    ssh ${NODE} "mkdir -p /etc/etcd/ssl"
    # Etcd
    for FILE in etcd-ca.pem etcd.pem etcd-key.pem; do
      scp /etc/etcd/ssl/${FILE} ${NODE}:/etc/etcd/ssl/${FILE}
    done
    # Kubernetes
    for FILE in pki/ca.pem pki/ca-key.pem bootstrap-kubelet.conf; do
      scp /etc/kubernetes/${FILE} ${NODE}:/etc/kubernetes/${FILE}
    done
  done

部署與設定

在每臺node節點下載kubelet.service相關文件來管理 kubelet:

$ export CORE_URL="https://kairen.github.io/files/manual-v1.10/node"
$ mkdir -p /etc/systemd/system/kubelet.service.d

$ wget "${CORE_URL}/kubelet.service" -O /lib/systemd/system/kubelet.service
$ wget "${CORE_URL}/10-kubelet.conf" -O /etc/systemd/system/kubelet.service.d/10-kubelet.conf

若 cluster dns或domain有改變的話,須要修改10-kubelet.conf。

最後創建 var 存放信息,而後啓動 kubelet 服務:

$ mkdir -p /var/lib/kubelet /var/log/kubernetes
$ systemctl enable kubelet.service && systemctl start kubelet.service

驗證集羣

完成後,在任意一臺master節點並經過簡單指令驗證:

$ kubectl get csr
NAME                                                   AGE       REQUESTOR                 CONDITION
csr-bvz9l                                              11m       system:node:k8s-m1        Approved,Issued
csr-jwr8k                                              11m       system:node:k8s-m2        Approved,Issued
csr-q867w                                              11m       system:node:k8s-m3        Approved,Issued
node-csr-Y-FGvxZWJqI-8RIK_IrpgdsvjGQVGW0E4UJOuaU8ogk   17s       system:bootstrap:dca3e1   Approved,Issued
node-csr-cnX9T1xp1LdxVDc9QW43W0pYkhEigjwgceRshKuI82c   19s       system:bootstrap:dca3e1   Approved,Issued
node-csr-m7SBA9RAGCnsgYWJB-u2HoB2qLSfiQZeAxWFI2WYN7Y   18s       system:bootstrap:dca3e1   Approved,Issued

$ kubectl get nodes
NAME      STATUS     ROLES     AGE       VERSION
k8s-m1    NotReady   master    12m       v1.10.0
k8s-m2    NotReady   master    11m       v1.10.0
k8s-m3    NotReady   master    11m       v1.10.0
k8s-n1    NotReady   node      32s       v1.10.0
k8s-n2    NotReady   node      31s       v1.10.0
k8s-n3    NotReady   node      29s       v1.10.0

Kubernetes Core Addons 部署

當完成上面全部步驟後,接着須要部署一些插件,其中如Kubernetes DNS與Kubernetes Proxy等這種 Addons 是很是重要的。

Kubernetes Proxy

Kube-proxy 是實現 Service 的關鍵插件,kube-proxy 會在每臺節點上執行,而後監聽 API Server 的 Service 與 Endpoint 資源物件的改變,而後來依據變化執行 iptables 來實現網絡的轉發。這邊咱們會須要建議一個 DaemonSet 來執行,而且創建一些須要的 Certificates。

在k8s-m1下載kube-proxy.yml來創建 Kubernetes Proxy Addon:

$ kubectl apply -f "https://kairen.github.io/files/manual-v1.10/addon/kube-proxy.yml.conf"
serviceaccount "kube-proxy" created
clusterrolebinding.rbac.authorization.k8s.io "system:kube-proxy" created
configmap "kube-proxy" created
daemonset.apps "kube-proxy" created

$ kubectl -n kube-system get po -o wide -l k8s-app=kube-proxy
NAME               READY     STATUS    RESTARTS   AGE       IP             NODE
kube-proxy-8j5w8   1/1       Running   0          29s       192.16.35.16   k8s-n3
kube-proxy-c4zvt   1/1       Running   0          29s       192.16.35.11   k8s-m1
kube-proxy-clpl6   1/1       Running   0          29s       192.16.35.12   k8s-m2...

Kubernetes DNS

Kube DNS 是 Kubernetes 集羣內部 Pod 之間互相溝通的重要 Addon,它容許 Pod 能夠經過 Domain Name 方式來鏈接 Service,其主要由 Kube DNS 與 Sky DNS 組合而成,經過 Kube DNS 監聽 Service 與 Endpoint 變化,來提供給 Sky DNS 信息,已更新解析位址。

在k8s-m1下載kube-proxy.yml來創建 Kubernetes Proxy Addon:

$ kubectl apply -f "https://kairen.github.io/files/manual-v1.10/addon/kube-dns.yml.conf"
serviceaccount "kube-dns" created
service "kube-dns" created
deployment.extensions "kube-dns" created

$ kubectl -n kube-system get po -l k8s-app=kube-dns
NAME                        READY     STATUS    RESTARTS   AGE
kube-dns-654684d656-zq5t8   0/3       Pending   0          1m

這邊會發現處於Pending狀態,是因爲 Kubernetes Pod Network 還未創建完成,所以全部節點會處於NotReady狀態,而形成 Pod 沒法被排程分配到指定節點上啓動,因爲爲了解決該問題,下節將說明如何創建 Pod Network。

Calico Network 安裝與設定

Calico 是一款純 Layer 3 的資料中心網絡方案(不須要 Overlay 網絡),Calico 好處是它整合了各類雲原平生臺,且 Calico 在每個節點利用 Linux Kernel 實現高效的 vRouter 來負責資料的轉發,而當資料中心複雜度增長時,能夠用 BGP route reflector 來達成。

本次不採用手動方式來創建 Calico 網絡,若想了解能夠參考 Integration Guide

在k8s-m1下載calico.yaml來創建 Calico Network:

$ kubectl apply -f "https://kairen.github.io/files/manual-v1.10/network/calico.yml.conf"
configmap "calico-config" created
daemonset "calico-node" created
deployment "calico-kube-controllers" created
clusterrolebinding "calico-cni-plugin" created
clusterrole "calico-cni-plugin" created
serviceaccount "calico-cni-plugin" created
clusterrolebinding "calico-kube-controllers" created
clusterrole "calico-kube-controllers" created
serviceaccount "calico-kube-controllers" created

$ kubectl -n kube-system get po -l k8s-app=calico-node -o wide
NAME                READY     STATUS    RESTARTS   AGE       IP             NODE
calico-node-22mbb   2/2       Running   0          1m        192.16.35.12   k8s-m2
calico-node-2qwf5   2/2       Running   0          1m        192.16.35.11   k8s-m1
calico-node-g2sp8   2/2       Running   0          1m        192.16.35.13   k8s-m3
calico-node-hghp4   2/2       Running   0          1m        192.16.35.14   k8s-n1
calico-node-qp6gf   2/2       Running   0          1m        192.16.35.15   k8s-n2
calico-node-zfx4n   2/2       Running   0          1m        192.16.35.16   k8s-n3

這邊若節點 IP 與網卡不一樣的話,請修改calico.yml文件。

在k8s-m1下載 Calico CLI 來查看 Calico nodes:

$ wget https://github.com/projectcalico/calicoctl/releases/download/v3.1.0/calicoctl -O /usr/local/bin/calicoctl
$ chmod u+x /usr/local/bin/calicoctl
$ cat <<EOF > ~/calico-rcexport ETCD_ENDPOINTS="https://192.16.35.11:2379,https://192.16.35.12:2379,https://192.16.35.13:2379"export ETCD_CA_CERT_FILE="/etc/etcd/ssl/etcd-ca.pem"export ETCD_CERT_FILE="/etc/etcd/ssl/etcd.pem"export ETCD_KEY_FILE="/etc/etcd/ssl/etcd-key.pem"
EOF

$ . ~/calico-rc
$ calicoctl node statusCalico process is running.
IPv4 BGP status+--------------+-------------------+-------+----------+-------------+| PEER ADDRESS |     PEER TYPE     | STATE |  SINCE   |    INFO     |+--------------+-------------------+-------+----------+-------------+| 192.16.35.12 | node-to-node mesh | up    | 04:42:37 | Established || 192.16.35.13 | node-to-node mesh | up    | 04:42:42 | Established || 192.16.35.14 | node-to-node mesh | up    | 04:42:37 | Established || 192.16.35.15 | node-to-node mesh | up    | 04:42:41 | Established || 192.16.35.16 | node-to-node mesh | up    | 04:42:36 | Established |+--------------+-------------------+-------+----------+-------------+...

查看 pending 的 pod 是否已執行:
$ kubectl -n kube-system get po -l k8s-app=kube-dns
kubectl -n kube-system get po -l k8s-app=kube-dns
NAME                        READY     STATUS    RESTARTS   AGE
kube-dns-654684d656-j8xzx   3/3       Running   0          10m

Kubernetes Extra Addons 部署

本節說明如何部署一些官方經常使用的 Addons,如 Dashboard、Heapster 等。

Dashboard

Dashboard 是 Kubernetes 社區官方開發的儀表板,有了儀表板後管理者就可以經過 Web-based 方式來管理 Kubernetes 集羣,除了提高管理方便,也讓資源視覺化,讓人更直覺看見系統信息的呈現結果。

在k8s-m1經過 kubectl 來創建 kubernetes dashboard 便可:

$ kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/master/src/deploy/recommended/kubernetes-dashboard.yaml
$ kubectl -n kube-system get po,svc -l k8s-app=kubernetes-dashboard
NAME                                    READY     STATUS    RESTARTS   AGE
kubernetes-dashboard-7d5dcdb6d9-j492l   1/1       Running   0          12s
NAME                   TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)   AGE
kubernetes-dashboard   ClusterIP   10.111.22.111   <none>        443/TCP   12s

這邊會額外創建一個名稱爲open-api Cluster Role Binding,這僅做爲方便測試時使用,在通常狀況下不要開啓,否則就會直接被存取全部 API:

$ cat <<EOF | kubectl create -f -
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: open-api
  namespace: ""
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: cluster-admin
subjects:
  - apiGroup: rbac.authorization.k8s.io
    kind: User
    name: system:anonymous
EOF

注意!管理者能夠針對特定使用者來開放 API 存取權限,但這邊方便使用直接綁在 cluster-admin cluster role。

完成後,就能夠經過瀏覽器存取 Dashboard

在 1.7 版本之後的 Dashboard 將再也不提供全部權限,所以須要創建一個 service account 來綁定 cluster-admin role:

$ kubectl -n kube-system create sa dashboard
$ kubectl create clusterrolebinding dashboard --clusterrole cluster-admin --serviceaccount=kube-system:dashboard
$ SECRET=$(kubectl -n kube-system get sa dashboard -o yaml | awk '/dashboard-token/ {print $3}')
$ kubectl -n kube-system describe secrets ${SECRET} | awk '/token:/{print $2}'
eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlLXN5c3RlbSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VjcmV0Lm5hbWUiOiJkYXNoYm9hcmQtdG9rZW4tdzVocmgiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoiZGFzaGJvYXJkIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZXJ2aWNlLWFjY291bnQudWlkIjoiYWJmMTFjYzMtZjRlYi0xMWU3LTgzYWUtMDgwMDI3NjdkOWI5Iiwic3ViIjoic3lzdGVtOnNlcnZpY2VhY2NvdW50Omt1YmUtc3lzdGVtOmRhc2hib2FyZCJ9.Xuyq34ci7Mk8bI97o4IldDyKySOOqRXRsxVWIJkPNiVUxKT4wpQZtikNJe2mfUBBD-JvoXTzwqyeSSTsAy2CiKQhekW8QgPLYelkBPBibySjBhJpiCD38J1u7yru4P0Pww2ZQJDjIxY4vqT46ywBklReGVqY3ogtUQg-eXueBmz-o7lJYMjw8L14692OJuhBjzTRSaKW8U2MPluBVnD7M2SOekDff7KpSxgOwXHsLVQoMrVNbspUCvtIiEI1EiXkyCNRGwfnd2my3uzUABIHFhm0_RZSmGwExPbxflr8Fc6bxmuz-_jSdOtUidYkFIzvEWw2vRovPgs3MXTv59RwUw

複製token,而後貼到 Kubernetes dashboard。注意這邊通常來講要針對不一樣 User 開啓特定存取權限。

Heapster

Heapster 是 Kubernetes 社區維護的容器集羣監控與效能分析工具。Heapster 會從 Kubernetes apiserver 取得全部 Node 信息,而後再經過這些 Node 來取得 kubelet 上的資料,最後再將全部收集到資料送到 Heapster 的後臺儲存 InfluxDB,最後利用 Grafana 來抓取 InfluxDB 的資料源來進行視覺化。

在k8s-m1經過 kubectl 來創建 kubernetes monitor 便可:

$ kubectl apply -f "https://kairen.github.io/files/manual-v1.10/addon/kube-monitor.yml.conf"
$ kubectl -n kube-system get po,svc
NAME                                           READY     STATUS    RESTARTS   AGE...
po/heapster-74fb5c8cdc-62xzc                   4/4       Running   0          7m
po/influxdb-grafana-55bd7df44-nw4nc            2/2       Running   0          7m

NAME                       TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)             AGE...
svc/heapster               ClusterIP   10.100.242.225   <none>        80/TCP              7m
svc/monitoring-grafana     ClusterIP   10.101.106.180   <none>        80/TCP              7m
svc/monitoring-influxdb    ClusterIP   10.109.245.142   <none>        8083/TCP,8086/TCP   7m···

完成後,就能夠經過瀏覽器存取 Grafana Dashboard

Ingress Controller

Ingress是利用 Nginx 或 HAProxy 等負載平衡器來曝露集羣內服務的元件,Ingress 主要經過設定 Ingress 規格來定義 Domain Name 映射 Kubernetes 內部 Service,這種方式能夠避免掉使用過多的 NodePort 問題。

在k8s-m1經過 kubectl 來創建 Ingress Controller 便可:

$ kubectl create ns ingress-nginx
$ kubectl apply -f "https://kairen.github.io/files/manual-v1.10/addon/ingress-controller.yml.conf"
$ kubectl -n ingress-nginx get po
NAME                                       READY     STATUS    RESTARTS   AGEdefault-http-backend-5c6d95c48-rzxfb       1/1       Running   0          7m
nginx-ingress-controller-699cdf846-982n4   1/1       Running   0          7m

這裏也能夠選擇 Traefik 的 Ingress Controller。

測試 Ingress 功能

這邊先創建一個 Nginx HTTP server Deployment 與 Service:

$ kubectl run nginx-dp --image nginx --port 80
$ kubectl expose deploy nginx-dp --port 80
$ kubectl get po,svc
$ cat <<EOF | kubectl create -f -
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  name: test-nginx-ingress
  annotations:
    ingress.kubernetes.io/rewrite-target: /
spec:
  rules:
  - host: test.nginx.com
    http:
      paths:
      - path: /
        backend:
          serviceName: nginx-dp
          servicePort: 80
EOF

經過 curl 來進行測試:

$ curl 192.16.35.10 -H 'Host: test.nginx.com'<!DOCTYPE html><html><head><title>Welcome to nginx!</title>...

# 測試其餘 domain name 是否會回傳 404

$ curl 192.16.35.10 -H 'Host: test.nginx.com1'default backend - 404

Helm Tiller Server

Helm 是 Kubernetes Chart 的管理工具,Kubernetes Chart 是一套預先組態的 Kubernetes 資源套件。其中Tiller Server主要負責接收來至 Client 的指令,並經過 kube-apiserver 與 Kubernetes 集羣作溝通,根據 Chart 定義的內容,來產生與管理各類對應 API 物件的 Kubernetes 部署文檔(又稱爲 Release)。

首先在k8s-m1安裝 Helm tool:

$ wget -qO- https://kubernetes-helm.storage.googleapis.com/helm-v2.8.1-linux-amd64.tar.gz | tar -zx
$ sudo mv linux-amd64/helm /usr/local/bin/

另外在全部node節點安裝 socat:

$ sudo apt-get install -y socat

接着初始化 Helm(這邊會安裝 Tiller Server):

$ kubectl -n kube-system create sa tiller
$ kubectl create clusterrolebinding tiller --clusterrole cluster-admin --serviceaccount=kube-system:tiller
$ helm init --service-account tiller...Tiller (the Helm server-side component) has been installed into your Kubernetes Cluster.Happy Helming!

$ kubectl -n kube-system get po -l app=helm
NAME                             READY     STATUS    RESTARTS   AGE
tiller-deploy-5f789bd9f7-tzss6   1/1       Running   0          29s

$ helm versionClient: &version.Version{SemVer:"v2.8.1", GitCommit:"6af75a8fd72e2aa18a2b278cfe5c7a1c5feca7f2", GitTreeState:"clean"}Server: &version.Version{SemVer:"v2.8.1", GitCommit:"6af75a8fd72e2aa18a2b278cfe5c7a1c5feca7f2", GitTreeState:"clean"}

測試 Helm 功能

這邊部署簡單 Jenkins 來進行功能測試:

$ helm install --name demo --set Persistence.Enabled=false stable/jenkins
$ kubectl get po,svc  -l app=demo-jenkins
NAME                           READY     STATUS    RESTARTS   AGE
demo-jenkins-7bf4bfcff-q74nt   1/1       Running   0          2m

NAME                 TYPE           CLUSTER-IP       EXTERNAL-IP   PORT(S)          AGE
demo-jenkins         LoadBalancer   10.103.15.129    <pending>     8080:31161/TCP   2m
demo-jenkins-agent   ClusterIP      10.103.160.126   <none>        50000/TCP        2m

# 取得 admin 帳號的密碼

$ printf $(kubectl get secret --namespace default demo-jenkins -o jsonpath="{.data.jenkins-admin-password}" | base64 --decode);echo
r6y9FMuF2u

完成後,就能夠經過瀏覽器存取 Jenkins Web

測試完成後,便可刪除:

$ helm ls
NAME    REVISION    UPDATED                     STATUS      CHART             NAMESPACE
demo    1           Tue Apr 10 07:29:51 2018    DEPLOYED    jenkins-0.14.4    default

$ helm delete demo --purge
release "demo" deleted

更多 Helm Apps 能夠到 Kubeapps Hub 尋找。

測試集羣

SSH 進入k8s-m1節點,而後關閉該節點:

$ sudo poweroff

接着進入到k8s-m2節點,經過 kubectl 來檢查集羣是否可以正常執行:

# 先檢查 etcd 狀態,能夠發現 etcd-0 由於關機而中斷
$ kubectl get cs
NAME                 STATUS      MESSAGE              ERROR
scheduler            Healthy     ok
controller-manager   Healthy     ok
etcd-1               Healthy     {"health": "true"}
etcd-2               Healthy     {"health": "true"}
etcd-0               Unhealthy   Get https://192.16.35.11:2379/health: net/http: request canceled while waiting for connection (Client.Timeout exceeded while awaiting headers)

# 測試是否能夠創建 Pod
$ kubectl run nginx --image nginx --restart=Never --port 80
$ kubectl get po
NAME      READY     STATUS    RESTARTS   AGE
nginx     1/1       Running   0          22s

更多參考:

相關文章
相關標籤/搜索