Slab原理及實現node
!linux
注:SLAB,SLOB,SLUB都是內核提供的分配器,其前端接口都是一致的,其中SLAB是通用的分配器,SLOB針對微小的嵌入式系統,其算法較爲簡單(最早適配算法),SLUB是面向配備大量物理內存的大規模並行系統,經過也描述符中未使用的字段來管理頁組,下降SLUB自己數據結構的內存開銷。算法
struct kmem_cache { struct array_cache *array[NR_CPUS]; unsigned int batchcount;//從本地高速緩存交換的對象的數量 unsigned int limit;//本地高速緩存中空閒對象的數量 unsigned int shared;//是否存在共享CPU高速緩存 unsigned int buffer_size;//對象長度+填充字節 u32 reciprocal_buffer_size;//倒數,加快計算 unsigned int flags;/*高速緩存永久性的標誌,當前只CFLGS_OFF_SLAB*/ unsigned int num;/*封裝在一個單獨的slab中的對象數目*/ unsigned int gfporder;/*每一個slab包含的頁框數取2爲底的對數*/ gfp_t gfpflags;/* e.g. GFP_DMA分配頁框是傳遞給夥伴系統的標誌*/ size_t colour; /* cache colouring range緩存的顏色個數free/aln*/ unsigned int colour_off; /*slab的基本對齊偏移,爲aln的整數倍,用來計算left_over*/ struct kmem_cache *slabp_cache; //slab描述符放在外部時使用,其指向的高速緩存來存儲描述符 unsigned int slab_size;//單個slab頭的大小,包括SLAB和對象描述符 unsigned int dflags; /*描述高速緩存動態屬性,目前沒用*/ /*構造函數*/ void(*ctor)(struct kmem_cache *, void *); const char *name; struct list_head next;//高速緩存描述符雙向鏈表指針 /*統計量*/ #if STATS unsigned long num_active; unsigned long num_allocations; unsigned long high_mark; unsigned long grown; unsigned long reaped; unsigned long errors; unsigned long max_freeable; unsignedlong node_allocs; unsigned long node_frees; unsigned long node_overflow; atomic_t allochit; atomic_t allocmiss; atomic_t freehit; atomic_t freemiss; #endif #if DEBUG into bj_offset;//對象間的偏移 int obj_size;//對象自己的大小, #endif //存放的是全部節點對應的相關數據。每一個節點擁有各自的數據; struc tkmem_list3 *nodelists[MAX_NUMNODES];/ }
/* * struct array_cache * *Purpose: * - LIFO ordering, to hand out cache-warm objectsfrom _alloc * - reduce the number of linked list operations * - reduce spinlock operations * * The limit is stored in the per-cpu structure toreduce the data cache * footprint. * */ struct array_cache { unsigned int avail;//可用對象數目 unsigned int limit;//可擁有的最大對象數目,和kmem_cache中同樣 unsigned int batchcount;//同kmem_cache unsigned int touched;//是否在收縮後被訪問過 spinlock_t lock; void *entry[]; /*僞數組,沒有任何數據項,其後爲釋放的對象指針數組*/ };
/* * The slab lists for all objects. */ struct kmem_list3 { struct list_head slabs_partial; /* partial listfirst, better asm code */ struct list_head slabs_full; struct list_head slabs_free; unsigned long free_objects;//半空和全空鏈表中對象的個數 unsigned int free_limit;//全部slab上容許未使用的對象最大數目 unsigned int colour_next; /* 下一個slab的顏色*/ spinlock_t list_lock; struct array_cache *shared; /* shared per node */ struct array_cache **alien; /* on other nodes */ unsigned long next_reap; /* 兩次緩存收縮時的間隔,下降次數,提升性能*/ int free_touched; /* 0收縮1獲取一個對象*/ };
struct slab { struct list_head list;//SLAB所在的鏈表 unsigned long colouroff;//SLAB中第一個對象的偏移 void *s_mem; /* including colour offset 第一個對象的地址*/ unsigned int inuse; /* num of objs active in slab被使用的對象數目*/ kmem_bufctl_t free;//下一個空閒對象的下標 unsigned short nodeid;//用於尋址在高速緩存中kmem_list3的下標 };
/** * kmem_cache_create - Create a cache. * @name: A string which is used in /proc/slabinfo toidentify this cache. * @size: The size of objects to be created in thiscache. * @align: The required alignment for the objects. * @flags: SLAB flags * @ctor: A constructor for the objects. * * Returns a ptr to the cache on success, NULL onfailure. * Cannot be calledwithin a int, but can be interrupted. * The @ctor is run when new pages are allocated bythe cache. struct kmem_cache * kmem_cache_create (const char *name, size_t size,size_t align,unsigned long flags, void (*ctor)(struct kmem_cache *, void *)) { size_t left_over, slab_size, ralign; struct kmem_cache *cachep = NULL, *pc; /*參數有效性檢查,名字有效性,對象長度比處理器字長還短,或者超過了容許分配的最大值,不能處在中斷上下文,可能致使睡眠*/ if (!name || in_interrupt() || (size <BYTES_PER_WORD) || size > KMALLOC_MAX_SIZE) { printk(KERN_ERR "%s: Early error in slab%s\n", __FUNCTION__, name); BUG(); } /*得到鎖*/ mutex_lock(&cache_chain_mutex); .... /* 將大小舍入處處理器字長的倍數 */ if (size & (BYTES_PER_WORD - 1)) { size += (BYTES_PER_WORD - 1); size &= ~(BYTES_PER_WORD - 1); } /* 計算對齊值*/ //若是設置了該標誌,則用硬件緩存行 if (flags & SLAB_HWCACHE_ALIGN) { ralign = cache_line_size();//得到硬件緩存行 //若是對象足夠小,則將對齊值減半,,儘量增長單行對象數目 while (size <= ralign ) ralign /= 2; } else {//不然使用處理器字長 ralign = BYTES_PER_WORD; } /*體系結構強制最小值*/ if (ralign < ARCH_SLAB_MINALIGN) { ralign = ARCH_SLAB_MINALIGN; } /*調用者強制對齊值*/ if (ralign < align) { ralign = align; } /*計算出對齊值.*/ align = ralign; /*從cache_cache緩存中分配一個kmem_cache新實例*/ cachep = kmem_cache_zalloc(&cache_cache,GFP_KERNEL); //填充cachep成員 cachep->obj_size = size;//將填充後的對象賦值, //設置SLAB頭位置 //若是對象大小超過一頁的1/8則放在外部 if ((size >= (PAGE_SIZE >> 3)) &&!slab_early_init) flags |= CFLGS_OFF_SLAB;//設置將SLAB放在外部 size = ALIGN(size, align);//按對齊大小對齊 //計算緩存長度 //利用calculate_slab_order迭代來找到理想的slab長度,size指對象的長度 left_over = calculate_slab_order(cachep, size,align, flags); if (!cachep->num) {//NUM指SLAB對象的數目 printk(KERN_ERR "kmem_cache_create: couldn't createcache %s.\n", name); kmem_cache_free(&cache_cache, cachep); cachep = NULL; goto oops; } //再次計算SLAB頭存放位置 //計算slab頭的大小=對象的數目x對象描述符的大小+slab描述符 slab_size = ALIGN(cachep->num *sizeof(kmem_bufctl_t) + sizeof(struct slab), align); //若是有足夠的空間,容納SLAB頭則將其放在SLAB上 if (flags & CFLGS_OFF_SLAB && left_over>= slab_size) { flags &= ~CFLGS_OFF_SLAB; left_over -= slab_size; } //若是標誌仍然存在,則計算外部的slab頭大小 if (flags & CFLGS_OFF_SLAB) { /* 此處不用對齊了*/ slab_size = cachep->num * sizeof(kmem_bufctl_t) +sizeof(struct slab); } //着色 cachep->colour_off =cache_line_size();// /* Offset must be a multiple of the alignment. */ if (cachep->colour_off< align) cachep->colour_off = align; cachep->colour = left_over /cachep->colour_off;//獲取顏色值 cachep->slab_size = slab_size; cachep->flags = flags; cachep->gfpflags = 0; //分配頁框的標誌 if (CONFIG_ZONE_DMA_FLAG && (flags &SLAB_CACHE_DMA)) cachep->gfpflags |= GFP_DMA; cachep->buffer_size = size; cachep->reciprocal_buffer_size =reciprocal_value(size); //若是在SLAB頭在外部,則找一個合適的緩存指向slabp_cache,從通用緩存中 if (flags & CFLGS_OFF_SLAB) { cachep->slabp_cache= kmem_find_general_cachep(slab_size, 0u); BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache)); } cachep->ctor = ctor; cachep->name = name; //設置per-cpu緩存 if (setup_cpu_cache(cachep)){ __kmem_cache_destroy(cachep); cachep = NULL; goto oops; } /* 加入鏈表*/ list_add(&cachep->next, &cache_chain); /*解鎖*/ mutex_unlock(&cache_chain_mutex); return cachep; }
static inline void *____cache_alloc(struct kmem_cache *cachep,gfp_t flags) { void *objp; struct array_cache *ac; check_irq_off(); ac = cpu_cache_get(cachep);//得到高速緩存中CPU緩存 if (likely(ac->avail)) {//若是CPU緩存中還有空間,則從中分配 STATS_INC_ALLOCHIT(cachep); ac->touched = 1; objp = ac->entry[--ac->avail]; } else {//不然要填充CPU高速緩存了 STATS_INC_ALLOCMISS(cachep); objp = cache_alloc_refill(cachep,flags); } return objp; }
//填充CPU高速緩存 static void *cache_alloc_refill(structkmem_cache *cachep, gfp_t flags) { int batchcount; struct kmem_list3 *l3; struct array_cache *ac; int node; ac = cpu_cache_get(cachep);//得到高所緩存所在本地CPU緩存 retry: batchcount = ac->batchcount; if (!ac->touched && batchcount > BATCHREFILL_LIMIT){ /*若是不常常活動,則部分填充*/ batchcount = BATCHREFILL_LIMIT;//16 } l3 = cachep->nodelists[node];//得到相應的kmem_list3結構體 ... /* 先考慮從共享本地CPU高速緩存*/ if (l3->shared && transfer_objects(ac, l3->shared,batchcount)) goto alloc_done; while (batchcount > 0) {//老老實實的從本高速緩存分配 struct list_head *entry; struct slab *slabp; /* Get slab alloc is to come from. */ entry = l3->slabs_partial.next;//半滿的鏈表 if (entry == &l3->slabs_partial) {//若是半空的都沒了,找全空的 l3->free_touched = 1; entry = l3->slabs_free.next; if (entry == &l3->slabs_free)//全空的也沒了,必須擴充了 cache_grow(cachep, flags | GFP_THISNODE, node, NULL); } //此時,已經找到了一個鏈表(半空或者全空) slabp = list_entry(entry, struct slab, list);//找到一個slab check_slabp(cachep, slabp); check_spinlock_acquired(cachep); while (slabp->inuse < cachep->num &&batchcount--) {//循環從slab中分配對象 ac->entry[ac->avail++] =slab_get_obj(cachep, slabp,node); } check_slabp(cachep, slabp); /*將slab放到合適的鏈中:*/ list_del(&slabp->list); if (slabp->free == BUFCTL_END)//若是已經沒有空閒對象了,則放到滿鏈表中 list_add(&slabp->list, &l3->slabs_full); else//不然放在半滿鏈表 list_add(&slabp->list, &l3->slabs_partial); } ... ac->touched = 1; return ac->entry[--ac->avail]; } //按次序從SLAB中起初對象 static void *slab_get_obj(struct kmem_cache *cachep, struct slab*slabp, int nodeid) { void *objp =index_to_obj(cachep, slabp, slabp->free);//找到要找的對象 kmem_bufctl_t next; slabp->inuse++;//增長計數器 next =slab_bufctl(slabp)[slabp->free]; //得到slab_bufctl[slab->free]的值,爲下一次鎖定的空閒下標 slabp->free =next;//將鎖定下標放到free中 return objp; }
//增長新的SLAB static int cache_grow(structkmem_cache *cachep, gfp_t flags, int nodeid, void *objp) { struct slab *slabp; size_t offset; gfp_t local_flags; struct kmem_list3 *l3; ... l3 = cachep->nodelists[nodeid]; ... /* 計算偏移量和下一個顏色.*/ offset = l3->colour_next;//計算下一個顏色 l3->colour_next++;//若是到了最大值則回0 if (l3->colour_next >= cachep->colour) l3->colour_next = 0; offset *= cachep->colour_off;//計算此SLAB的偏移 //從夥伴系統得到物理頁 objp = kmem_getpages(cachep, local_flags, nodeid); ... /* 若是slab頭放在外部,則調用此函數分配函數*/ slabp = alloc_slabmgmt(cachep, objp, offset, local_flags & ~GFP_CONSTRAINT_MASK, nodeid); slabp->nodeid = nodeid;//在kmem_cache中數組的下標 //依次對每一個物理頁的lru.next=cache,lru.prev=slab slab_map_pages(cachep, slabp, objp); //調用各個對象的構造器函數,初始化新SLAB中的對象 cache_init_objs(cachep, slabp); /* 將新的SLAB加入到全空鏈表中*/ list_add_tail(&slabp->list, &(l3->slabs_free)); STATS_INC_GROWN(cachep); l3->free_objects += cachep->num;//更新空閒對象的數目 ... return 0; }
//真正的處理函數 static inline void __cache_free(struct kmem_cache *cachep, void*objp) { struct array_cache *ac = cpu_cache_get(cachep); ... if (likely(ac->avail < ac->limit)){//若是CPU高速緩存還有位子,則直接釋放 ac->entry[ac->avail++] = objp; return; } else {//不然須要將部分對象FLUSH到SLAB中了 STATS_INC_FREEMISS(cachep); cache_flusharray(cachep, ac); ac->entry[ac->avail++] = objp; } }
//將部分CPU高速緩存FLUSH到SLAB中 static void cache_flusharray(struct kmem_cache *cachep, structarray_cache *ac) { int batchcount; struct kmem_list3 *l3; int node = numa_node_id(); batchcount = ac->batchcount;//指定數量 l3 = cachep->nodelists[node]; if (l3->shared) {//若是共享CPU緩存存在,則將共享緩存填滿,而後返回 struct array_cache *shared_array = l3->shared; int max = shared_array->limit - shared_array->avail; if (max) {// if (batchcount > max) batchcount = max; //這裏只是拷貝,並無移除 memcpy(&(shared_array->entry[shared_array->avail]), ac->entry, sizeof(void *) * batchcount); shared_array->avail += batchcount; goto free_done; } } //不然須要釋放到SLAB中了 free_block(cachep,ac->entry, batchcount, node); free_done: //對CPU高速緩存進行移除操做 spin_unlock(&l3->list_lock); ac->avail -= batchcount; memmove(ac->entry, &(ac->entry[batchcount]),sizeof(void *)*ac->avail); }
//將nr_objects個對象釋放到SLAB中,objpp指CPU緩存數組 static void free_block(struct kmem_cache *cachep, void **objpp,int nr_objects, int node) { int i; struct kmem_list3 *l3; for (i = 0; i < nr_objects; i++) {//對每個對象處理,先從頭部處理,LIFO void *objp = objpp[i]; struct slab *slabp; slabp = virt_to_slab(objp);//得到SLAB描述符 l3 = cachep->nodelists[node]; list_del(&slabp->list);//將SLAB從原來的鏈表中刪除 check_spinlock_acquired_node(cachep, node); check_slabp(cachep, slabp); slab_put_obj(cachep, slabp, objp,node);//將objp放到slab中,和slab_get_obj相反 STATS_DEC_ACTIVE(cachep); l3->free_objects++;//增長高速緩存的可用對象數目 check_slabp(cachep, slabp); /*將SLAB從新插入鏈表*/ if (slabp->inuse == 0) {//若是SLAB是全空的 if (l3->free_objects > l3->free_limit) {//而且高速緩存空閒對象已經超出限制,則須要將SLAB返回給底層頁框管理器 l3->free_objects -= cachep->num; slab_destroy(cachep, slabp); } else {//直接插入空閒鏈表 list_add(&slabp->list, &l3->slabs_free); } } else {//直接插入部分空閒鏈表 list_add_tail(&slabp->list, &l3->slabs_partial); } } }
即kmalloc和kfree使用的,放在malloc_size表中,從32-33554432共21個成員。成員的結構如數組
/* Size description struct for general caches. */ struct cache_sizes { size_t cs_size;//對象大小 struct kmem_cache *cs_cachep;//對應的高速緩存 struct kmem_cache *cs_dmacachep;//對應的DMA訪問緩存 };
//通用高速緩存在/kmalloc_sizes.h struct cache_sizes malloc_sizes[] = { #define CACHE(x) { .cs_size = (x) }, #include <linux/kmalloc_sizes.h> CACHE(ULONG_MAX) #undef CACHE };
Kmalloc_sizes.h緩存
#if (PAGE_SIZE == 4096) CACHE(32) #endif CACHE(64) #if L1_CACHE_BYTES < 64 CACHE(96) #endif CACHE(128) #if L1_CACHE_BYTES < 128 CACHE(192) #endif CACHE(256) CACHE(512) CACHE(1024) CACHE(2048) CACHE(4096) CACHE(8192) CACHE(16384) CACHE(32768) CACHE(65536) CACHE(131072) #if KMALLOC_MAX_SIZE >= 262144 CACHE(262144) #endif #if KMALLOC_MAX_SIZE >= 524288 CACHE(524288) #endif #if KMALLOC_MAX_SIZE >= 1048576 CACHE(1048576) #endif #if KMALLOC_MAX_SIZE >= 2097152 CACHE(2097152) #endif #if KMALLOC_MAX_SIZE >= 4194304 CACHE(4194304) #endif #if KMALLOC_MAX_SIZE >= 8388608 CACHE(8388608) #endif #if KMALLOC_MAX_SIZE >= 16777216 CACHE(16777216) #endif #if KMALLOC_MAX_SIZE >= 33554432 CACHE(33554432) #endif
//分配函數 static inline void *kmalloc(size_t size, gfp_t flags) { if (__builtin_constant_p(size)) {//是否用常數指定所需的內存長度 int i = 0; //找到合適大小的i值 ... //按類型進行分配 #ifdef CONFIG_ZONE_DMA if (flags & GFP_DMA) return kmem_cache_alloc(malloc_sizes[i].cs_dmacachep, flags); #endif return kmem_cache_alloc(malloc_sizes[i].cs_cachep, flags); }//不使用常數指定 return __kmalloc(size, flags); }
//大小不用指定的分配 static __always_inline void *__do_kmalloc(size_t size, gfp_tflags, void *caller) { struct kmem_cache *cachep; cachep = __find_general_cachep(size, flags);//找一個合適大小的高速緩存 if (unlikely(ZERO_OR_NULL_PTR(cachep))) return cachep; return __cache_alloc(cachep, flags, caller);//分配函數 }
//kmalloc對應的釋放函數 void kfree(const void *objp) { struct kmem_cache *c; unsigned long flags; ... c =virt_to_cache(objp);//得到高速緩存 debug_check_no_locks_freed(objp, obj_size(c)); __cache_free(c, (void*)objp);//調用此函數完成實質性的分配 local_irq_restore(flags); }