linux內核分析———SLAB原理及實現

linux內核分析———SLAB原理及實現
前端

Slab原理及實現node

1. 總體關係圖

!linux

注:SLAB,SLOB,SLUB都是內核提供的分配器,其前端接口都是一致的,其中SLAB是通用的分配器,SLOB針對微小的嵌入式系統,其算法較爲簡單(最早適配算法),SLUB是面向配備大量物理內存的大規模並行系統,經過也描述符中未使用的字段來管理頁組,下降SLUB自己數據結構的內存開銷。算法

2. 相關數據結構

2.1 緩存kmem_cache (/mm/slab.c)

struct kmem_cache {

struct array_cache *array[NR_CPUS];

unsigned int batchcount;//從本地高速緩存交換的對象的數量

unsigned int limit;//本地高速緩存中空閒對象的數量

unsigned int shared;//是否存在共享CPU高速緩存

unsigned int buffer_size;//對象長度+填充字節

u32 reciprocal_buffer_size;//倒數,加快計算



unsigned int flags;/*高速緩存永久性的標誌,當前只CFLGS_OFF_SLAB*/

unsigned int num;/*封裝在一個單獨的slab中的對象數目*/

unsigned int gfporder;/*每一個slab包含的頁框數取2爲底的對數*/



gfp_t gfpflags;/* e.g. GFP_DMA分配頁框是傳遞給夥伴系統的標誌*/

size_t colour; /* cache colouring range緩存的顏色個數free/aln*/



unsigned int colour_off;

/*slab的基本對齊偏移,爲aln的整數倍,用來計算left_over*/



struct kmem_cache *slabp_cache;

//slab描述符放在外部時使用,其指向的高速緩存來存儲描述符

unsigned int slab_size;//單個slab頭的大小,包括SLAB和對象描述符

unsigned int dflags; /*描述高速緩存動態屬性,目前沒用*/



/*構造函數*/

void(*ctor)(struct kmem_cache *, void *);

const char *name;

struct list_head next;//高速緩存描述符雙向鏈表指針



/*統計量*/

#if STATS

unsigned long num_active;

unsigned long num_allocations;

unsigned long high_mark;

unsigned long grown;

unsigned long reaped;

unsigned long errors;

unsigned long max_freeable;

unsignedlong node_allocs;

unsigned long node_frees;

unsigned long node_overflow;

atomic_t allochit;

atomic_t allocmiss;

atomic_t freehit;

atomic_t freemiss;

#endif

#if DEBUG

into bj_offset;//對象間的偏移

int obj_size;//對象自己的大小,

#endif

//存放的是全部節點對應的相關數據。每一個節點擁有各自的數據;

struc tkmem_list3 *nodelists[MAX_NUMNODES];/

}

2.2 array_cache本地高速緩存,每一個CPU對應一個該結構

/*

* struct array_cache

*

*Purpose:

* - LIFO ordering, to hand out cache-warm objectsfrom _alloc

* - reduce the number of linked list operations

* - reduce spinlock operations

*

* The limit is stored in the per-cpu structure toreduce the data cache

* footprint.

*

*/

struct array_cache {

unsigned int avail;//可用對象數目

unsigned int limit;//可擁有的最大對象數目,和kmem_cache中同樣

unsigned int batchcount;//同kmem_cache

unsigned int touched;//是否在收縮後被訪問過

spinlock_t lock;

void *entry[]; /*僞數組,沒有任何數據項,其後爲釋放的對象指針數組*/

};

2.3 kmem_list3管理slab鏈表的數據結構

/*

* The slab lists for all objects.

*/

struct kmem_list3 {

struct list_head slabs_partial; /* partial listfirst, better asm code */

struct list_head slabs_full;

struct list_head slabs_free;

unsigned long free_objects;//半空和全空鏈表中對象的個數

unsigned int free_limit;//全部slab上容許未使用的對象最大數目

unsigned int colour_next; /* 下一個slab的顏色*/

spinlock_t list_lock;

struct array_cache *shared; /* shared per node */

struct array_cache **alien; /* on other nodes */

unsigned long next_reap; /* 兩次緩存收縮時的間隔,下降次數,提升性能*/

int free_touched; /* 0收縮1獲取一個對象*/

};

2.4 slab對象

struct slab {

struct list_head list;//SLAB所在的鏈表

unsigned long colouroff;//SLAB中第一個對象的偏移

void *s_mem; /* including colour offset 第一個對象的地址*/

unsigned int inuse; /* num of objs active in slab被使用的對象數目*/

kmem_bufctl_t free;//下一個空閒對象的下標

unsigned short nodeid;//用於尋址在高速緩存中kmem_list3的下標

};

3. 相關函數

3.1 kmem_cache_create (mm/slab.c)

/**

* kmem_cache_create - Create a cache.

* @name: A string which is used in /proc/slabinfo toidentify this cache.

* @size: The size of objects to be created in thiscache.

* @align: The required alignment for the objects.

* @flags: SLAB flags

* @ctor: A constructor for the objects.

*

* Returns a ptr to the cache on success, NULL onfailure.

* Cannot be calledwithin a int, but can be interrupted.

* The @ctor is run when new pages are allocated bythe cache.



struct kmem_cache *

kmem_cache_create (const char *name, size_t size,size_t align,unsigned long flags,

void (*ctor)(struct kmem_cache *, void *))

{

size_t left_over, slab_size, ralign;

struct kmem_cache *cachep = NULL, *pc;

/*參數有效性檢查,名字有效性,對象長度比處理器字長還短,或者超過了容許分配的最大值,不能處在中斷上下文,可能致使睡眠*/

if (!name || in_interrupt() || (size <BYTES_PER_WORD) ||

size > KMALLOC_MAX_SIZE) {

printk(KERN_ERR "%s: Early error in slab%s\n", __FUNCTION__,

name);

BUG();

}



/*得到鎖*/

mutex_lock(&cache_chain_mutex);

....

/*

將大小舍入處處理器字長的倍數

*/

if (size & (BYTES_PER_WORD - 1)) {

size += (BYTES_PER_WORD - 1);

size &= ~(BYTES_PER_WORD - 1);

}



/* 計算對齊值*/



//若是設置了該標誌,則用硬件緩存行

if (flags & SLAB_HWCACHE_ALIGN) {

ralign = cache_line_size();//得到硬件緩存行

//若是對象足夠小,則將對齊值減半,,儘量增長單行對象數目

while (size <= ralign )

ralign /= 2;

} else {//不然使用處理器字長

ralign = BYTES_PER_WORD;

}



/*體系結構強制最小值*/

if (ralign < ARCH_SLAB_MINALIGN) {

ralign = ARCH_SLAB_MINALIGN;

}

/*調用者強制對齊值*/

if (ralign < align) {

ralign = align;

}

/*計算出對齊值.*/

align = ralign;







/*從cache_cache緩存中分配一個kmem_cache新實例*/

cachep = kmem_cache_zalloc(&cache_cache,GFP_KERNEL);

//填充cachep成員

cachep->obj_size = size;//將填充後的對象賦值,





//設置SLAB頭位置

//若是對象大小超過一頁的1/8則放在外部

if ((size >= (PAGE_SIZE >> 3)) &&!slab_early_init)

flags |= CFLGS_OFF_SLAB;//設置將SLAB放在外部

size = ALIGN(size, align);//按對齊大小對齊



//計算緩存長度

//利用calculate_slab_order迭代來找到理想的slab長度,size指對象的長度

left_over = calculate_slab_order(cachep, size,align, flags);



if (!cachep->num) {//NUM指SLAB對象的數目

printk(KERN_ERR

"kmem_cache_create: couldn't createcache %s.\n", name);

kmem_cache_free(&cache_cache, cachep);

cachep = NULL;

goto oops;

}



//再次計算SLAB頭存放位置

//計算slab頭的大小=對象的數目x對象描述符的大小+slab描述符

slab_size = ALIGN(cachep->num *sizeof(kmem_bufctl_t)

+ sizeof(struct slab), align);



//若是有足夠的空間,容納SLAB頭則將其放在SLAB上

if (flags & CFLGS_OFF_SLAB && left_over>= slab_size) {

flags &= ~CFLGS_OFF_SLAB;

left_over -= slab_size;

}

//若是標誌仍然存在,則計算外部的slab頭大小

if (flags & CFLGS_OFF_SLAB) {

/* 此處不用對齊了*/

slab_size =

cachep->num * sizeof(kmem_bufctl_t) +sizeof(struct slab);

}



//着色

cachep->colour_off =cache_line_size();//

/* Offset must be a multiple of the alignment. */

if (cachep->colour_off< align)

cachep->colour_off = align;

cachep->colour = left_over /cachep->colour_off;//獲取顏色值

cachep->slab_size = slab_size;

cachep->flags = flags;

cachep->gfpflags = 0; //分配頁框的標誌

if (CONFIG_ZONE_DMA_FLAG && (flags &SLAB_CACHE_DMA))

cachep->gfpflags |= GFP_DMA;

cachep->buffer_size = size;

cachep->reciprocal_buffer_size =reciprocal_value(size);

//若是在SLAB頭在外部,則找一個合適的緩存指向slabp_cache,從通用緩存中

if (flags & CFLGS_OFF_SLAB) {

cachep->slabp_cache= kmem_find_general_cachep(slab_size, 0u);

BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));

}

cachep->ctor = ctor;

cachep->name = name;



//設置per-cpu緩存

if (setup_cpu_cache(cachep)){

__kmem_cache_destroy(cachep);

cachep = NULL;

goto oops;

}



/* 加入鏈表*/

list_add(&cachep->next, &cache_chain);

/*解鎖*/

mutex_unlock(&cache_chain_mutex);

return cachep;

}

3.2 對象分配函數kmem_cache_alloc(kmem_cache_t* cachep, gfp_t flags)

static inline void *____cache_alloc(struct kmem_cache *cachep,gfp_t flags)

{

void *objp;

struct array_cache *ac;



check_irq_off();



ac = cpu_cache_get(cachep);//得到高速緩存中CPU緩存

if (likely(ac->avail)) {//若是CPU緩存中還有空間,則從中分配

STATS_INC_ALLOCHIT(cachep);

ac->touched = 1;

objp = ac->entry[--ac->avail];

} else {//不然要填充CPU高速緩存了

STATS_INC_ALLOCMISS(cachep);

objp = cache_alloc_refill(cachep,flags);

}

return objp;

}
//填充CPU高速緩存

static void *cache_alloc_refill(structkmem_cache *cachep, gfp_t flags)

{

int batchcount;

struct kmem_list3 *l3;

struct array_cache *ac;

int node;

ac = cpu_cache_get(cachep);//得到高所緩存所在本地CPU緩存

retry:

batchcount = ac->batchcount;

if (!ac->touched && batchcount > BATCHREFILL_LIMIT){

/*若是不常常活動,則部分填充*/

batchcount = BATCHREFILL_LIMIT;//16

}

l3 = cachep->nodelists[node];//得到相應的kmem_list3結構體

...

/* 先考慮從共享本地CPU高速緩存*/

if (l3->shared && transfer_objects(ac, l3->shared,batchcount))

goto alloc_done;



while (batchcount > 0) {//老老實實的從本高速緩存分配

struct list_head *entry;

struct slab *slabp;

/* Get slab alloc is to come from. */

entry = l3->slabs_partial.next;//半滿的鏈表

if (entry == &l3->slabs_partial) {//若是半空的都沒了,找全空的

l3->free_touched = 1;

entry = l3->slabs_free.next;

if (entry == &l3->slabs_free)//全空的也沒了,必須擴充了

cache_grow(cachep, flags | GFP_THISNODE, node, NULL);

}

//此時,已經找到了一個鏈表(半空或者全空)

slabp = list_entry(entry, struct slab, list);//找到一個slab

check_slabp(cachep, slabp);

check_spinlock_acquired(cachep);

while (slabp->inuse < cachep->num &&batchcount--)

{//循環從slab中分配對象

ac->entry[ac->avail++] =slab_get_obj(cachep, slabp,node);

}

check_slabp(cachep, slabp);



/*將slab放到合適的鏈中:*/

list_del(&slabp->list);

if (slabp->free == BUFCTL_END)//若是已經沒有空閒對象了,則放到滿鏈表中

list_add(&slabp->list, &l3->slabs_full);

else//不然放在半滿鏈表

list_add(&slabp->list, &l3->slabs_partial);

}

...

ac->touched = 1;

return ac->entry[--ac->avail];

}

//按次序從SLAB中起初對象

static void *slab_get_obj(struct kmem_cache *cachep, struct slab*slabp,

int nodeid)

{

void *objp =index_to_obj(cachep, slabp, slabp->free);//找到要找的對象

kmem_bufctl_t next;

slabp->inuse++;//增長計數器

next =slab_bufctl(slabp)[slabp->free];

//得到slab_bufctl[slab->free]的值,爲下一次鎖定的空閒下標

slabp->free =next;//將鎖定下標放到free中

return objp;

}

3.4 cache_grow

//增長新的SLAB

static int cache_grow(structkmem_cache *cachep, gfp_t flags, int nodeid, void *objp)

{

struct slab *slabp;

size_t offset;

gfp_t local_flags;

struct kmem_list3 *l3;

...

l3 = cachep->nodelists[nodeid];

...

/* 計算偏移量和下一個顏色.*/

offset = l3->colour_next;//計算下一個顏色

l3->colour_next++;//若是到了最大值則回0

if (l3->colour_next >= cachep->colour)

l3->colour_next = 0;

offset *= cachep->colour_off;//計算此SLAB的偏移



//從夥伴系統得到物理頁

objp = kmem_getpages(cachep, local_flags, nodeid);

...

/* 若是slab頭放在外部,則調用此函數分配函數*/

slabp = alloc_slabmgmt(cachep, objp, offset,

local_flags & ~GFP_CONSTRAINT_MASK, nodeid);

slabp->nodeid = nodeid;//在kmem_cache中數組的下標

//依次對每一個物理頁的lru.next=cache,lru.prev=slab

slab_map_pages(cachep, slabp, objp);

//調用各個對象的構造器函數,初始化新SLAB中的對象

cache_init_objs(cachep, slabp);

/* 將新的SLAB加入到全空鏈表中*/

list_add_tail(&slabp->list, &(l3->slabs_free));

STATS_INC_GROWN(cachep);

l3->free_objects += cachep->num;//更新空閒對象的數目

...

return 0;

}

3.5 釋放對象kmem_cache_free

//真正的處理函數

static inline void __cache_free(struct kmem_cache *cachep, void*objp)

{

struct array_cache *ac = cpu_cache_get(cachep);

...



if (likely(ac->avail < ac->limit)){//若是CPU高速緩存還有位子,則直接釋放

ac->entry[ac->avail++] = objp;

return;

} else {//不然須要將部分對象FLUSH到SLAB中了

STATS_INC_FREEMISS(cachep);

cache_flusharray(cachep, ac);

ac->entry[ac->avail++] = objp;

}

}
//將部分CPU高速緩存FLUSH到SLAB中

static void cache_flusharray(struct kmem_cache *cachep, structarray_cache *ac)

{

int batchcount;

struct kmem_list3 *l3;

int node = numa_node_id();



batchcount = ac->batchcount;//指定數量

l3 = cachep->nodelists[node];

if (l3->shared) {//若是共享CPU緩存存在,則將共享緩存填滿,而後返回

struct array_cache *shared_array = l3->shared;

int max = shared_array->limit - shared_array->avail;

if (max) {//

if (batchcount > max)

batchcount = max;

//這裏只是拷貝,並無移除

memcpy(&(shared_array->entry[shared_array->avail]),

ac->entry, sizeof(void *) * batchcount);

shared_array->avail += batchcount;

goto free_done;

}

}

//不然須要釋放到SLAB中了

free_block(cachep,ac->entry, batchcount, node);

free_done:

//對CPU高速緩存進行移除操做

spin_unlock(&l3->list_lock);

ac->avail -= batchcount;

memmove(ac->entry, &(ac->entry[batchcount]),sizeof(void *)*ac->avail);

}
//將nr_objects個對象釋放到SLAB中,objpp指CPU緩存數組

static void free_block(struct kmem_cache *cachep, void **objpp,int nr_objects, int node)

{

int i;

struct kmem_list3 *l3;



for (i = 0; i < nr_objects; i++) {//對每個對象處理,先從頭部處理,LIFO

void *objp = objpp[i];

struct slab *slabp;



slabp = virt_to_slab(objp);//得到SLAB描述符

l3 = cachep->nodelists[node];

list_del(&slabp->list);//將SLAB從原來的鏈表中刪除

check_spinlock_acquired_node(cachep, node);

check_slabp(cachep, slabp);

slab_put_obj(cachep, slabp, objp,node);//將objp放到slab中,和slab_get_obj相反

STATS_DEC_ACTIVE(cachep);

l3->free_objects++;//增長高速緩存的可用對象數目

check_slabp(cachep, slabp);



/*將SLAB從新插入鏈表*/

if (slabp->inuse == 0) {//若是SLAB是全空的

if (l3->free_objects > l3->free_limit)

{//而且高速緩存空閒對象已經超出限制,則須要將SLAB返回給底層頁框管理器

l3->free_objects -= cachep->num;

slab_destroy(cachep, slabp);

} else {//直接插入空閒鏈表

list_add(&slabp->list, &l3->slabs_free);

}

} else {//直接插入部分空閒鏈表

list_add_tail(&slabp->list, &l3->slabs_partial);

}

}

}

3.5 高速緩存的銷燬kmem_cache_destroy,此函數用在模塊卸載時使用,釋放之前分配的空間

4. 通用緩存

即kmalloc和kfree使用的,放在malloc_size表中,從32-33554432共21個成員。成員的結構如數組

/* Size description struct for general caches. */

struct cache_sizes {

size_t cs_size;//對象大小

struct kmem_cache *cs_cachep;//對應的高速緩存

struct kmem_cache *cs_dmacachep;//對應的DMA訪問緩存

};
//通用高速緩存在/kmalloc_sizes.h

struct cache_sizes malloc_sizes[] = {

#define CACHE(x) { .cs_size = (x) },

#include <linux/kmalloc_sizes.h>

CACHE(ULONG_MAX)

#undef CACHE

};

Kmalloc_sizes.h緩存

#if (PAGE_SIZE == 4096)

CACHE(32)

#endif

CACHE(64)

#if L1_CACHE_BYTES < 64

CACHE(96)

#endif

CACHE(128)

#if L1_CACHE_BYTES < 128

CACHE(192)

#endif

CACHE(256)

CACHE(512)

CACHE(1024)

CACHE(2048)

CACHE(4096)

CACHE(8192)

CACHE(16384)

CACHE(32768)

CACHE(65536)

CACHE(131072)

#if KMALLOC_MAX_SIZE >= 262144

CACHE(262144)

#endif

#if KMALLOC_MAX_SIZE >= 524288

CACHE(524288)

#endif

#if KMALLOC_MAX_SIZE >= 1048576

CACHE(1048576)

#endif

#if KMALLOC_MAX_SIZE >= 2097152

CACHE(2097152)

#endif

#if KMALLOC_MAX_SIZE >= 4194304

CACHE(4194304)

#endif

#if KMALLOC_MAX_SIZE >= 8388608

CACHE(8388608)

#endif

#if KMALLOC_MAX_SIZE >= 16777216

CACHE(16777216)

#endif

#if KMALLOC_MAX_SIZE >= 33554432

CACHE(33554432)

#endif

4.1 kalloc函數

//分配函數

static inline void *kmalloc(size_t size, gfp_t flags)

{

if (__builtin_constant_p(size))

{//是否用常數指定所需的內存長度

int i = 0;

//找到合適大小的i值

...

//按類型進行分配

#ifdef CONFIG_ZONE_DMA

if (flags & GFP_DMA)

return kmem_cache_alloc(malloc_sizes[i].cs_dmacachep,

flags);

#endif

return kmem_cache_alloc(malloc_sizes[i].cs_cachep, flags);

}//不使用常數指定

return __kmalloc(size, flags);

}
//大小不用指定的分配

static __always_inline void *__do_kmalloc(size_t size, gfp_tflags, void *caller)

{

struct kmem_cache *cachep;

cachep = __find_general_cachep(size, flags);//找一個合適大小的高速緩存

if (unlikely(ZERO_OR_NULL_PTR(cachep)))

return cachep;

return __cache_alloc(cachep, flags, caller);//分配函數

}

4.2 釋放函數kfree

//kmalloc對應的釋放函數

void kfree(const void *objp)

{

struct kmem_cache *c;

unsigned long flags;

...

c =virt_to_cache(objp);//得到高速緩存

debug_check_no_locks_freed(objp, obj_size(c));

__cache_free(c, (void*)objp);//調用此函數完成實質性的分配

local_irq_restore(flags);

}
相關文章
相關標籤/搜索