flume採集log4j日誌到kafka

簡單測試項目:java

一、新建Java項目結構以下:

測試類FlumeTest代碼以下:apache

package com.demo.flume;

import org.apache.log4j.Logger;

public class FlumeTest {
    
    private static final Logger LOGGER = Logger.getLogger(FlumeTest.class);

    public static void main(String[] args) throws InterruptedException {
        for (int i = 20; i < 100; i++) {
            LOGGER.info("Info [" + i + "]");
            Thread.sleep(1000);
        }
    }
}

監聽kafka接收消息Consumer代碼以下:bootstrap

package com.demo.flume;

/**
 * INFO: info
 * User: zhaokai
 * Date: 2017/3/17
 * Version: 1.0
 * History: <p>若是有修改過程,請記錄</P>
 */

import java.util.Arrays;
import java.util.Properties;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

public class Consumer {

    public static void main(String[] args) {
        System.out.println("begin consumer");
        connectionKafka();
        System.out.println("finish consumer");
    }

    @SuppressWarnings("resource")
    public static void connectionKafka() {

        Properties props = new Properties();
        props.put("bootstrap.servers", "192.168.1.163:9092");
        props.put("group.id", "testConsumer");
        props.put("enable.auto.commit", "true");
        props.put("auto.commit.interval.ms", "1000");
        props.put("session.timeout.ms", "30000");
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
        consumer.subscribe(Arrays.asList("flumeTest"));
        while (true) {
            ConsumerRecords<String, String> records = consumer.poll(100);
            try {
                Thread.sleep(2000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            for (ConsumerRecord<String, String> record : records) {
                System.out.printf("===================offset = %d, key = %s, value = %s", record.offset(), record.key(),
                        record.value());
            }
        }
    }
}

log4j配置文件配置以下:服務器

log4j.rootLogger=INFO,console

# for package com.demo.kafka, log would be sent to kafka appender.
log4j.logger.com.demo.flume=info,flume

log4j.appender.flume = org.apache.flume.clients.log4jappender.Log4jAppender
log4j.appender.flume.Hostname = 192.168.1.163
log4j.appender.flume.Port = 4141
log4j.appender.flume.UnsafeMode = true
log4j.appender.flume.layout=org.apache.log4j.PatternLayout
log4j.appender.flume.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %p [%c:%L] - %m%n
 
# appender console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.out
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d [%-5p] [%t] - [%l] %m%n

備註:其中hostname爲flume安裝的服務器IP,port爲端口與下面的flume的監聽端口相對應session

pom.xml引入以下jar:併發

<dependencies>
    <dependency>
        <groupId>org.slf4j</groupId>
        <artifactId>slf4j-log4j12</artifactId>
        <version>1.7.10</version>
    </dependency>
    <dependency>
        <groupId>org.apache.flume</groupId>
        <artifactId>flume-ng-core</artifactId>
        <version>1.5.0</version>
    </dependency>
    <dependency>
        <groupId>org.apache.flume.flume-ng-clients</groupId>
        <artifactId>flume-ng-log4jappender</artifactId>
        <version>1.5.0</version>
    </dependency>

    <dependency>
        <groupId>junit</groupId>
        <artifactId>junit</artifactId>
        <version>4.12</version>
    </dependency>

    <dependency>
        <groupId>org.apache.kafka</groupId>
        <artifactId>kafka-clients</artifactId>
        <version>0.10.2.0</version>
    </dependency>
    
    <dependency>
        <groupId>org.apache.kafka</groupId>
        <artifactId>kafka_2.10</artifactId>
        <version>0.10.2.0</version>
    </dependency>
    
    <dependency>
        <groupId>org.apache.kafka</groupId>
        <artifactId>kafka-log4j-appender</artifactId>
        <version>0.10.2.0</version>
    </dependency>
    
    <dependency>
        <groupId>com.google.guava</groupId>
        <artifactId>guava</artifactId>
        <version>18.0</version>
    </dependency>
</dependencies>

二、配置flume

flume/conf下:app

新建avro.conf 文件內容以下:測試

固然skin能夠用任何方式,這裏我用的是kafka,具體的skin方式能夠看官網ui

a1.sources=source1
a1.channels=channel1
a1.sinks=sink1

a1.sources.source1.type=avro
a1.sources.source1.bind=192.168.1.163
a1.sources.source1.port=4141
a1.sources.source1.channels = channel1

a1.channels.channel1.type=memory
a1.channels.channel1.capacity=10000
a1.channels.channel1.transactionCapacity=1000
a1.channels.channel1.keep-alive=30

a1.sinks.sink1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.sink1.topic = flumeTest
a1.sinks.sink1.brokerList = 192.168.1.163:9092
a1.sinks.sink1.requiredAcks = 0
a1.sinks.sink1.sink.batchSize = 20
a1.sinks.sink1.channel = channel1

如上配置,flume服務器運行在192.163.1.163上,而且監聽的端口爲4141,在log4j中只須要將日誌發送到192.163.1.163的4141端口就能成功的發送到flume上。flume會監聽並收集該端口上的數據信息,而後將它轉化成kafka event,併發送到kafka集羣flumeTest topic下。google

三、啓動flume並測試

  1. flume啓動命令:bin/flume-ng agent --conf conf --conf-file conf/avro.conf --name a1 -Dflume.root.logger=INFO,console
  2. 運行FlumeTest類的main方法打印日誌
  3. 容許Consumer的main方法打印kafka接收到的數據
相關文章
相關標籤/搜索