1、Nginx總體架構nginx
正常執行中的nginx會有多個進程,最基本的有master process(監控進程,也叫作主進程)和woker process(工做進程),還可能有cache相關進程。後端
一個較爲完整的總體框架結構如圖所示:數組
2、核心進程模型服務器
啓動nginx的主進程將充當監控進程,而由主進程fork()出來的子進程則充當工做進程。網絡
nginx也能夠單進程模型執行,在這種進程模型下,主進程就是工做進程,沒有監控進程。多線程
Nginx的核心進程模型框圖以下:架構
master進程框架
監控進程充當整個進程組與用戶的交互接口,同時對進程進行監護。它不須要處理網絡事件,不負責業務的執行,只會經過管理worker進程來實現重啓服務、平滑升級、更換日誌文件、配置文件實時生效等功能。socket
master進程全貌圖(來自阿里集團數據平臺博客):函數
master進程中for(::)無限循環內有一個關鍵的sigsuspend()函數調用,該函數調用是的master進程的大部分時間都處於掛起狀態,直到master進程收到信號爲止。
master進程經過檢查一下7個標誌位來決定ngx_master_process_cycle方法的運行:
sig_atomic_t ngx_reap;
sig_atomic_t ngx_terminate;
sig_atomic_t ngx_quit;
sig_atomic_t ngx_reconfigure;
sig_atomic_t ngx_reopen;
sig_atomic_t ngx_change_binary;
sig_atomic_t ngx_noaccept;
進程中接收到的信號對Nginx框架的意義:
信號 | 對應進程中的全局標誌位變量 | 意義 |
QUIT | ngx_quit | 優雅地關閉整個服務 |
TERM或INT | ngx_terminate | 強制關閉整個服務 |
USR1 | ngx_reopen | 從新打開服務中的全部文件 |
WINCH | ngx_noaccept | 全部子進程再也不接受處理新的鏈接,實際至關於對全部子進程發送QUIT信號 |
USR2 | ngx_change_binary | 平滑升級到新版本的Nginx程序 |
HUP | ng_reconfigure | 重讀配置文件 |
CHLD | ngx_reap | 有子進程之外結束,須要監控全部子進程 |
還有一個標誌位會用到:ngx_restart,它僅僅是在master工做流程中做爲標誌位使用,與信號無關。
核心代碼(ngx_process_cycle.c):
void ngx_master_process_cycle(ngx_cycle_t *cycle) { char *title; u_char *p; size_t size; ngx_int_t i; ngx_uint_t n, sigio; sigset_t set; struct itimerval itv; ngx_uint_t live; ngx_msec_t delay; ngx_listening_t *ls; ngx_core_conf_t *ccf; //信號處理設置工做 sigemptyset(&set); sigaddset(&set, SIGCHLD); sigaddset(&set, SIGALRM); sigaddset(&set, SIGIO); sigaddset(&set, SIGINT); sigaddset(&set, ngx_signal_value(NGX_RECONFIGURE_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_REOPEN_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_NOACCEPT_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_TERMINATE_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_CHANGEBIN_SIGNAL)); if (sigprocmask(SIG_BLOCK, &set, NULL) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "sigprocmask() failed"); } sigemptyset(&set); size = sizeof(master_process); for (i = 0; i < ngx_argc; i++) { size += ngx_strlen(ngx_argv[i]) + 1; } title = ngx_pnalloc(cycle->pool, size); p = ngx_cpymem(title, master_process, sizeof(master_process) - 1); for (i = 0; i < ngx_argc; i++) { *p++ = ' '; p = ngx_cpystrn(p, (u_char *) ngx_argv[i], size); } ngx_setproctitle(title); ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module); //其中包含了fork產生子進程的內容 ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); //Cache管理進程與cache加載進程的主流程 ngx_start_cache_manager_processes(cycle, 0); ngx_new_binary = 0; delay = 0; sigio = 0; live = 1; for ( ;; ) {//循環 if (delay) { if (ngx_sigalrm) { sigio = 0; delay *= 2; ngx_sigalrm = 0; } ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "termination cycle: %d", delay); itv.it_interval.tv_sec = 0; itv.it_interval.tv_usec = 0; itv.it_value.tv_sec = delay / 1000; itv.it_value.tv_usec = (delay % 1000 ) * 1000; if (setitimer(ITIMER_REAL, &itv, NULL) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "setitimer() failed"); } } ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "sigsuspend"); sigsuspend(&set);//master進程休眠,等待接受信號被激活 ngx_time_update(); ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "wake up, sigio %i", sigio); //標誌位爲1表示須要監控全部子進程 if (ngx_reap) { ngx_reap = 0; ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "reap children"); live = ngx_reap_children(cycle);//管理子進程 } //當live標誌位爲0(表示全部子進程已經退出)、ngx_terminate標誌位爲1或者ngx_quit標誌位爲1表示要退出master進程 if (!live && (ngx_terminate || ngx_quit)) { ngx_master_process_exit(cycle);//退出master進程 } //ngx_terminate標誌位爲1,強制關閉服務,發送TERM信號到全部子進程 if (ngx_terminate) { if (delay == 0) { delay = 50; } if (sigio) { sigio--; continue; } sigio = ccf->worker_processes + 2 /* cache processes */; if (delay > 1000) { ngx_signal_worker_processes(cycle, SIGKILL); } else { ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_TERMINATE_SIGNAL)); } continue; } //ngx_quit標誌位爲1,優雅的關閉服務 if (ngx_quit) { ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL));//向全部子進程發送quit信號 ls = cycle->listening.elts; for (n = 0; n < cycle->listening.nelts; n++) {//關閉監聽端口 if (ngx_close_socket(ls[n].fd) == -1) { ngx_log_error(NGX_LOG_EMERG, cycle->log, ngx_socket_errno, ngx_close_socket_n " %V failed", &ls[n].addr_text); } } cycle->listening.nelts = 0; continue; } //ngx_reconfigure標誌位爲1,從新讀取配置文件 //nginx不會讓原來的worker子進程再從新讀取配置文件,其策略是從新初始化ngx_cycle_t結構體,用它來讀取新的額配置文件 //再建立新的額worker子進程,銷燬舊的worker子進程 if (ngx_reconfigure) { ngx_reconfigure = 0; //ngx_new_binary標誌位爲1,平滑升級Nginx if (ngx_new_binary) { ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); ngx_start_cache_manager_processes(cycle, 0); ngx_noaccepting = 0; continue; } ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reconfiguring"); //初始化ngx_cycle_t結構體 cycle = ngx_init_cycle(cycle); if (cycle == NULL) { cycle = (ngx_cycle_t *) ngx_cycle; continue; } ngx_cycle = cycle; ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module); //建立新的worker子進程 ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_JUST_RESPAWN); ngx_start_cache_manager_processes(cycle, 1); /* allow new processes to start */ ngx_msleep(100); live = 1; //向全部子進程發送QUIT信號 ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); } //ngx_restart標誌位在ngx_noaccepting(表示正在中止接受新的鏈接)爲1的時候被設置爲1. //重啓子進程 if (ngx_restart) { ngx_restart = 0; ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); ngx_start_cache_manager_processes(cycle, 0); live = 1; } //ngx_reopen標誌位爲1,從新打開全部文件 if (ngx_reopen) { ngx_reopen = 0; ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reopening logs"); ngx_reopen_files(cycle, ccf->user); ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_REOPEN_SIGNAL)); } //平滑升級Nginx if (ngx_change_binary) { ngx_change_binary = 0; ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "changing binary"); ngx_new_binary = ngx_exec_new_binary(cycle, ngx_argv); } //ngx_noaccept爲1,表示全部子進程再也不處理新的鏈接 if (ngx_noaccept) { ngx_noaccept = 0; ngx_noaccepting = 1; ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); } } }
ngx_start_worker_processes函數:
static void ngx_start_worker_processes(ngx_cycle_t *cycle, ngx_int_t n, ngx_int_t type) { ngx_int_t i; ngx_channel_t ch; ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "start worker processes"); ch.command = NGX_CMD_OPEN_CHANNEL; //循環建立n個worker子進程 for (i = 0; i < n; i++) { //完成fok新進程的具體工做 ngx_spawn_process(cycle, ngx_worker_process_cycle, (void *) (intptr_t) i, "worker process", type); //全局數組ngx_processes就是用來存儲每一個子進程的相關信息,如:pid,channel,進程作具體事情的接口指針等等,這些信息就是用結構體ngx_process_t來描述的。 ch.pid = ngx_processes[ngx_process_slot].pid; ch.slot = ngx_process_slot; ch.fd = ngx_processes[ngx_process_slot].channel[0]; /*在ngx_spawn_process建立好一個worker進程返回後,master進程就將worker進程的pid、worker進程在ngx_processes數組中的位置及channel[0]傳遞給前面已經建立好的worker進程,而後繼續循環開始建立下一個worker進程。剛提到一個channel[0],這裏簡單說明一下:channel就是一個可以存儲2個整型元素的數組而已,這個channel數組就是用於socketpair函數建立一個進程間通道之用的。master和worker進程以及worker進程之間均可以經過這樣的一個通道進行通訊,這個通道就是在ngx_spawn_process函數中fork以前調用socketpair建立的。*/ ngx_pass_open_channel(cycle, &ch); } }
ngx_spawn_process函數:
//參數解釋: //cycle:nginx框架所圍繞的核心結構體 //proc:子進程中將要執行的工做循環 //data:參數 //name:子進程名字 ngx_pid_t ngx_spawn_process(ngx_cycle_t *cycle, ngx_spawn_proc_pt proc, void *data, char *name, ngx_int_t respawn) { u_long on; ngx_pid_t pid; ngx_int_t s; if (respawn >= 0) { s = respawn; } else { for (s = 0; s < ngx_last_process; s++) { if (ngx_processes[s].pid == -1) { break; } } if (s == NGX_MAX_PROCESSES) { ngx_log_error(NGX_LOG_ALERT, cycle->log, 0, "no more than %d processes can be spawned", NGX_MAX_PROCESSES); return NGX_INVALID_PID; } } if (respawn != NGX_PROCESS_DETACHED) { /* Solaris 9 still has no AF_LOCAL */ //建立父子進程間通訊的套接字對(基於TCP) if (socketpair(AF_UNIX, SOCK_STREAM, 0, ngx_processes[s].channel) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "socketpair() failed while spawning \"%s\"", name); return NGX_INVALID_PID; } ngx_log_debug2(NGX_LOG_DEBUG_CORE, cycle->log, 0, "channel %d:%d", ngx_processes[s].channel[0], ngx_processes[s].channel[1]); //設置爲非阻塞模式 if (ngx_nonblocking(ngx_processes[s].channel[0]) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, ngx_nonblocking_n " failed while spawning \"%s\"", name); ngx_close_channel(ngx_processes[s].channel, cycle->log); return NGX_INVALID_PID; } if (ngx_nonblocking(ngx_processes[s].channel[1]) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, ngx_nonblocking_n " failed while spawning \"%s\"", name); ngx_close_channel(ngx_processes[s].channel, cycle->log); return NGX_INVALID_PID; } on = 1; if (ioctl(ngx_processes[s].channel[0], FIOASYNC, &on) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "ioctl(FIOASYNC) failed while spawning \"%s\"", name); ngx_close_channel(ngx_processes[s].channel, cycle->log); return NGX_INVALID_PID; } if (fcntl(ngx_processes[s].channel[0], F_SETOWN, ngx_pid) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "fcntl(F_SETOWN) failed while spawning \"%s\"", name); ngx_close_channel(ngx_processes[s].channel, cycle->log); return NGX_INVALID_PID; } if (fcntl(ngx_processes[s].channel[0], F_SETFD, FD_CLOEXEC) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "fcntl(FD_CLOEXEC) failed while spawning \"%s\"", name); ngx_close_channel(ngx_processes[s].channel, cycle->log); return NGX_INVALID_PID; } if (fcntl(ngx_processes[s].channel[1], F_SETFD, FD_CLOEXEC) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "fcntl(FD_CLOEXEC) failed while spawning \"%s\"", name); ngx_close_channel(ngx_processes[s].channel, cycle->log); return NGX_INVALID_PID; } ngx_channel = ngx_processes[s].channel[1]; } else { ngx_processes[s].channel[0] = -1; ngx_processes[s].channel[1] = -1; } ngx_process_slot = s; //建立子進程 pid = fork(); switch (pid) { case -1: ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "fork() failed while spawning \"%s\"", name); ngx_close_channel(ngx_processes[s].channel, cycle->log); return NGX_INVALID_PID; case 0: ngx_pid = ngx_getpid(); proc(cycle, data); break; default: break; } ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "start %s %P", name, pid); ngx_processes[s].pid = pid; ngx_processes[s].exited = 0; if (respawn >= 0) { return pid; } ngx_processes[s].proc = proc; ngx_processes[s].data = data; ngx_processes[s].name = name; ngx_processes[s].exiting = 0; switch (respawn) { case NGX_PROCESS_NORESPAWN: ngx_processes[s].respawn = 0; ngx_processes[s].just_spawn = 0; ngx_processes[s].detached = 0; break; case NGX_PROCESS_JUST_SPAWN: ngx_processes[s].respawn = 0; ngx_processes[s].just_spawn = 1; ngx_processes[s].detached = 0; break; case NGX_PROCESS_RESPAWN: ngx_processes[s].respawn = 1; ngx_processes[s].just_spawn = 0; ngx_processes[s].detached = 0; break; case NGX_PROCESS_JUST_RESPAWN: ngx_processes[s].respawn = 1; ngx_processes[s].just_spawn = 1; ngx_processes[s].detached = 0; break; case NGX_PROCESS_DETACHED: ngx_processes[s].respawn = 0; ngx_processes[s].just_spawn = 0; ngx_processes[s].detached = 1; break; } if (s == ngx_last_process) { ngx_last_process++; } return pid; }
worker進程
worker進程的主要任務是完成具體的任務邏輯。其主要關注點是與客戶端或後端真實服務器(此時nginx做爲中間代理)之間的數據可讀/可寫 等I/O交互事件,因此工做進程的阻塞點是在像select()、epoll_wait()等這樣的I/O多路複用函數調用處,以等待發生數據可讀/寫事 件。固然也可能被新收到的進程信號中斷。
master進程如何統統知worker進程去作某些工做呢?採用的是信號。
當收到信號時,信號處理函數ngx_signal_handler()就會執行。
對於worker進程的工做方法ngx_worker_process_cycle來講,它主要關注4個全局標誌位:
sig_atomic_t ngx_terminate;//強制關閉進程
sig_atomic_t ngx_quit;//優雅地關閉進程(有惟一一段代碼會設置它,就是接受到QUIT信號。ngx_quit只有在首次設置爲1,時,纔會將ngx_exiting置爲1)
ngx_uint_t ngx_exiting;//退出進程標誌位
sig_atomic_t ngx_reopen;//從新打開全部文件
其中ngx_terminate、ngx_quit 、ngx_reopen都將由ngx_signal_handler根據接受到的信號來設置。ngx_exiting標誌位僅由ngx_worker_cycle方法在退出時做爲標誌位使用。
核心代碼(ngx_process_cycle.c):
static void ngx_worker_process_cycle(ngx_cycle_t *cycle, void *data) { ngx_int_t worker = (intptr_t) data; ngx_uint_t i; ngx_connection_t *c; ngx_process = NGX_PROCESS_WORKER; //子進程初始化 ngx_worker_process_init(cycle, worker); ngx_setproctitle("worker process"); //這裏有一段多線程條件下的代碼。因爲nginx並不支持多線程,所以刪除掉了 //循環 for ( ;; ) { //ngx_exiting標誌位爲1,進程退出 if (ngx_exiting) { c = cycle->connections; for (i = 0; i < cycle->connection_n; i++) { if (c[i].fd != -1 && c[i].idle) { c[i].close = 1; c[i].read->handler(c[i].read); } } if (ngx_event_timer_rbtree.root == ngx_event_timer_rbtree.sentinel) { ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "exiting"); ngx_worker_process_exit(cycle); } } ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "worker cycle"); ngx_process_events_and_timers(cycle);//處理事件的方法 //強制結束進程 if (ngx_terminate) { ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "exiting"); ngx_worker_process_exit(cycle); } //優雅地退出進程 if (ngx_quit) { ngx_quit = 0; ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "gracefully shutting down"); ngx_setproctitle("worker process is shutting down"); if (!ngx_exiting) { ngx_close_listening_sockets(cycle); //設置ngx_exiting 標誌位 ngx_exiting = 1; } } //從新打開全部文件 if (ngx_reopen) { ngx_reopen = 0; ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reopening logs"); ngx_reopen_files(cycle, -1); } } }