Suspend to RAM和Suspend to Idle分析,以及在HiKey上性能對比

測試環境:AOSP 7.1.1+Kernel 4.4.17 HW:HiKeyhtml

             Ubuntu 14.04+Kernel 4.4.0-31android

聯繫方式:arnoldlu@qq.comgit

1. Linux內核suspend狀態

Linux內核支持多種類型的睡眠狀態,經過設置不一樣的模塊進入低功耗模式來達到省電功能。github

目前存在四種模式:suspend to idle、power-on standby(Standby)、suspend to ram(STR)和sudpend to disk(Hibernate),分別對應ACPI狀態的S0、S一、S3和S4。shell

State in Linux Label state ACPI state 註釋
#define PM_SUSPEND_ON        ((__force suspend_state_t) 0)        一切正常
#define PM_SUSPEND_FREEZE    ((__force suspend_state_t) 1) freeze Suspend-to-Idle S0 凍結進程+掛起設備+CPU空閒 
#define PM_SUSPEND_STANDBY    ((__force suspend_state_t) 2) standby Standby/Power-on Suspend S1 凍結進程+掛起設備+關閉nonbootCPU 
#define PM_SUSPEND_MEM        ((__force suspend_state_t) 3) mem Suspend-to-RAM S3 僅保留RAM自刷新 
#define PM_SUSPEND_MAX        ((__force suspend_state_t) 4) disk Suspend-to-disk S4

關閉全部設備包括RAM也被稱爲Hibernate緩存

從freeze-->standby-->mem睡眠程度愈來愈深,喚醒花費的時間也愈來愈多。架構

Suspend-To-Idle併發

此狀態包括frozen processes+suspended devices+idle processors,具備輕量化的特色;app

而且相對於相對於Idle狀態能節省更多的功耗,由於此時的用戶空間被凍結且I/O設備進入了低功耗狀態。async

相對於Suspend-To-RAM它具備低延時的優點。

Standby/Power-On Suspend

此狀態包括frozen processes+suspended devices+offline nonboot CPUs+suspend low-level system,對CPU的處理更近一步。

因此相對於Suspend-To-Idle節省了更多的功耗,可是因爲須要恢復CPU和一些底層功能也花費了更多的時間。

Suspend-to-RAM

此狀態使全部的設備進入低功耗狀態,僅保留RAM自刷新。

全部的設備和系統狀態都保存在RAM中,全部外設被掛起。

在HiKey的實際測試中,boot CPU是沒有關閉的!實際上這裏也沒有standby,mem和standby基本上沒有區別。

Suspend-to-disk

此狀態是最省功耗的模式。

相對Suspend-to-RAMRAM能節省更多功耗的緣由是數據會被寫入磁盤中,RAM也能夠被關閉。

可是這也致使了,更多的恢復延時,在resume的時候讀回到RAM,而後在進行系統和設備狀態恢復工做。

可是在通常的嵌入式設備上,此種狀態不支持。

 

下面用STR表示Suspend to RAM,STI表示Suspend to Idle。

詳情請參考:http://www.linaro.org/blog/suspend-to-idle/

2. Suspend狀態,以及STR 和STI區別

寫入/sys/power/state不一樣字符串,可讓系統進入不一樣睡眠狀態。

針對state sysfs節點的寫入,最終會進入到state_store這個函數,將字符串轉換成上表中不一樣狀態。

state_store(kernel/power/main.c)
    -->pm_suspend (kernel/power/suspend.c)-------------處理除freeze、standby、mem三種類型suspend
        -->enter_state---------------------------------在進入睡眠以前,作一些準備工做
            -->suspend_devices_and_enter
                -->suspend_enter-----------------------這裏纔是freeze與standby/mem區別所在。
    -->hibernate---------------------------------------進入suspend to disk流程

 

STR和STI的最主要區別就是下面一段代碼:

static int suspend_enter(suspend_state_t state, bool *wakeup)
{

…

    /*
     * PM_SUSPEND_FREEZE equals
     * frozen processes + suspended devices + idle processors.
     * Thus we should invoke freeze_enter() soon after
     * all the devices are suspended.
     */
//====================================FREEZE===============================================================
if (state == PM_SUSPEND_FREEZE) {------------------------------------若是要進入freeze狀態,就會執行此段代碼。 trace_suspend_resume(TPS("machine_suspend"), state, true); freeze_enter(); trace_suspend_resume(TPS("machine_suspend"), state, false); goto Platform_wake;----------------------------------------------在執行結束跳轉到Platform_wake,中間一段綠色代碼將會被跳過。因此說freeze和standby、mem相比,多了freeze_enter,少了對non-boot CPUs、arch、syscore的操做。 } //=====================================MEM=============================================================== error = disable_nonboot_cpus(); if (error || suspend_test(TEST_CPUS)) { log_suspend_abort_reason("Disabling non-boot cpus failed"); goto Enable_cpus; } arch_suspend_disable_irqs(); BUG_ON(!irqs_disabled()); error = syscore_suspend(); if (!error) { *wakeup = pm_wakeup_pending(); if (!(suspend_test(TEST_CORE) || *wakeup)) { trace_suspend_resume(TPS("machine_suspend"), state, true); error = suspend_ops->enter(state); trace_suspend_resume(TPS("machine_suspend"), state, false); events_check_enabled = false; } else if (*wakeup) { pm_get_active_wakeup_sources(suspend_abort, MAX_SUSPEND_ABORT_LEN); log_suspend_abort_reason(suspend_abort); error = -EBUSY; } syscore_resume(); } arch_suspend_enable_irqs(); BUG_ON(irqs_disabled()); Enable_cpus: enable_nonboot_cpus(); Platform_wake: platform_resume_noirq(state); dpm_resume_noirq(PMSG_RESUME); … }

 

3 suspend/resume流程梳理

下面分析一下suspend/resume每一個細分階段。

整個suspend能夠分爲若干階段,每一個階段函數—>關鍵節點Trace—>analyze_suspend.py解析Trace—>根據Trace時間畫出Timeline圖表

這樣就能夠分析出總的時間差別,每一個階段差別,甚至一個設備suspend/resume、一個子系統suspend/resume的時間差別。

analyze_suspend.py 基於默認基於ftrace進行分析(在指定dmesg的時候,會發現缺失了不少log信息,沒法生成timeline類型的html文件),將suspend/resume分爲若干階段。

下面簡要介紹一下各個階段,而後基於此進行代碼分析。

在kernel版本大於等與3.15以後,解析須要的全部log信息均可以從ftrace中獲取。以前的內核版本還須要藉助於dmesg。

因爲使用的kernel版本是4.4.17,sysvals.usetraceeventsonly被置位,因此只會parseTraceLog()。

下表中的各個階段經過解析suspend_resume: XXXXXXX類型的ftrace來獲取。

各子模塊、子系統的解析經過device_pm_callback_start和device_pm_callback_end來截取時間段,以及這時間段內的callgraph。

Phase名稱 ftrace關鍵詞    
suspend_prepare dpm_prepare    
suspend dpm_suspend    
suspend_late dpm_suspend_late    
suspend_noirq dpm_suspend_noirq    
suspend_machine machine_suspend start    
resume_machine machine_suspend end    
resume_noirq dpm_resume_noirq    
resume_early dpm_resume_early    
resume dpm_resume    
resume_complete dpm_complete    

下面是一組suspend/resume執行ftrace log,咱們將據此進行各階段代碼分析,包括suspend_enter、suspend_prepare、suspend、suspend_late、suspend_noirq、suspend_machine、resume_machine、resume_noirq、resume_early、resume、resume_complete。

從這裏也能夠看出freeze和mem/standby除了machine部分不一樣以外,還少了CPU開關和syscore suspend/resume操做。

suspend_resume: suspend_enter[1] begin
suspend_resume: sync_filesystems[0] begin
suspend_resume: sync_filesystems[0] end
suspend_resume: freeze_processes[0] begin
suspend_resume: freeze_processes[0] end
suspend_resume: suspend_enter[1] end
suspend_resume: dpm_prepare[2] begin
suspend_resume: dpm_prepare[2] end
suspend_resume: dpm_suspend[2] begin
suspend_resume: dpm_suspend[2] end
suspend_resume: dpm_suspend_late[2] begin
suspend_resume: dpm_suspend_late[2] end
suspend_resume: dpm_suspend_noirq[2] begin
suspend_resume: dpm_suspend_noirq[2] end
No CPU_OFF…
No syscore_suspend…

suspend_resume: machine_suspend[1] begin
suspend_resume: machine_suspend[1] end
No suscore_resume…
No CPU_ON…

suspend_resume: dpm_resume_noirq[16] begin
suspend_resume: dpm_resume_noirq[16] end
suspend_resume: dpm_resume_early[16] begin
suspend_resume: dpm_resume_early[16] end
suspend_resume: dpm_resume[16] begin
suspend_resume: dpm_resume[16] end
suspend_resume: dpm_complete[16] begin
suspend_resume: dpm_complete[16] end
suspend_resume: resume_console[1] begin
suspend_resume: resume_console[1] end
suspend_resume: thaw_processes[0] begin
suspend_resume: thaw_processes[0] end

suspend_resume: suspend_enter[3] begin
suspend_resume: sync_filesystems[0] begin
suspend_resume: sync_filesystems[0] end
suspend_resume: freeze_processes[0] begin
suspend_resume: freeze_processes[0] end
suspend_resume: suspend_enter[3] end
suspend_resume: dpm_prepare[2] begin
suspend_resume: dpm_prepare[2] end
suspend_resume: dpm_suspend[2] begin
suspend_resume: dpm_suspend[2] end
suspend_resume: dpm_suspend_late[2] begin
suspend_resume: dpm_suspend_late[2] end
suspend_resume: dpm_suspend_noirq[2] begin
suspend_resume: dpm_suspend_noirq[2] end
suspend_resume: CPU_OFF[1-7] begin/end
suspend_resume: syscore_suspend[0] begin/end
suspend_resume: machine_suspend[3] begin
suspend_resume: machine_suspend[3] end
suspend_resume: syscore_resume[0] begin/end
suspend_resume: CPU_ON[1-7] begin/end
suspend_resume: dpm_resume_noirq[16] begin
suspend_resume: dpm_resume_noirq[16] end
suspend_resume: dpm_resume_early[16] begin
suspend_resume: dpm_resume_early[16] end
suspend_resume: dpm_resume[16] begin
suspend_resume: dpm_resume[16] end
suspend_resume: dpm_complete[16] begin
suspend_resume: dpm_complete[16] end
suspend_resume: resume_console[3] begin
suspend_resume: resume_console[3] end
suspend_resume: thaw_processes[0] begin
suspend_resume: thaw_processes[0] end

在介紹相關代碼以前,先介紹一下HiKey使用的platform_suspend_ops:

static const struct platform_suspend_ops psci_suspend_ops = {
    .valid          = suspend_valid_only_mem,  僅支持mem類型的suspend
    .enter          = psci_system_suspend_enter,  睡眠的CPU底層支持
};

freeze的platform_freeze_ops以下:

static const struct platform_freeze_ops acpi_freeze_ops = {
    .begin = acpi_freeze_begin,
    .prepare = acpi_freeze_prepare,
    .restore = acpi_freeze_restore,
    .end = acpi_freeze_end,
};

3.1 suspend_enter

enter_state做爲suspend/resume的入口點,完成了絕大部分工做。首先確保系統沒有正在進入睡眠狀態;而後爲suspend作一些準備,使系統進入睡眠並在喚醒後進行必要清理恢復工做。

下面分析一下suspend以前的準備工做,即suspend_enter階段:

static int enter_state(suspend_state_t state)
{
    int error;

 trace_suspend_resume(TPS("suspend_enter"), state, true);
    if (state == PM_SUSPEND_FREEZE) {--------------------------------------是不是freeze類型suspend
#ifdef CONFIG_PM_DEBUG
        if (pm_test_level != TEST_NONE && pm_test_level <= TEST_CPUS) {
            pr_warning("PM: Unsupported test mode for suspend to idle,"
                   "please choose none/freezer/devices/platform.\n");
            return -EAGAIN;
        }
#endif
    } else if (!valid_state(state)) {-------------------------------------目前只支持mem類型suspend
        return -EINVAL;
    }
    if (!mutex_trylock(&pm_mutex))
        return -EBUSY;

    if (state == PM_SUSPEND_FREEZE)
        freeze_begin();--------------------------------------------------初始化suspend_freeze_state爲FREEZE_STATE_NONE

#ifndef CONFIG_SUSPEND_SKIP_SYNC
    trace_suspend_resume(TPS("sync_filesystems"), 0, true);
    printk(KERN_INFO "PM: Syncing filesystems ... ");
    sys_sync();----------------------------------------------------------sync文件系統緩存文件,確保數據sync到硬盤。
    printk("done.\n");
    trace_suspend_resume(TPS("sync_filesystems"), 0, false);
#endif

    pr_debug("PM: Preparing system for sleep (%s)\n", pm_states[state]);
    pm_suspend_clear_flags();
    error = suspend_prepare(state);--------------------------------------注意這裏面的suspend_prepare和下面的suspend_prepare階段容易搞混。
    if (error)
        goto Unlock;

    if (suspend_test(TEST_FREEZER))
        goto Finish;

 trace_suspend_resume(TPS("suspend_enter"), state, false);     pr_debug("PM: Suspending system (%s)\n", pm_states[state]);
    pm_restrict_gfp_mask();
    error = suspend_devices_and_enter(state);
    pm_restore_gfp_mask();

Finish:
    pr_debug("PM: Finishing wakeup.\n");
    suspend_finish();---------------------------------------------------解凍,重啓進程;發送PM_POST_SUSPEND通知;釋放以前分配的console。
Unlock:
    mutex_unlock(&pm_mutex);
    return error;
}

 

接着分析一下suspend_prepare函數:

static int suspend_prepare(suspend_state_t state)
{
    int error;

    if (!sleep_state_supported(state))  驗證suspend狀態
        return -EPERM;

    pm_prepare_console();  分配一個suspend console

    error = pm_notifier_call_chain(PM_SUSPEND_PREPARE);  發送PM_SUSPEND_PREPARE通知消息
    if (error)
        goto Finish;

    trace_suspend_resume(TPS("freeze_processes"), 0, true);
    error = suspend_freeze_processes();  凍結進程
    trace_suspend_resume(TPS("freeze_processes"), 0, false);
    if (!error)
        return 0;

    suspend_stats.failed_freeze++;
    dpm_save_failed_step(SUSPEND_FREEZE);
Finish:
    pm_notifier_call_chain(PM_POST_SUSPEND);
    pm_restore_console();
    return error;
}

suspend_freeze_process先處理用戶空間進程,而後處理內核進程:

static inline int suspend_freeze_processes(void)
{
    int error;

    error = freeze_processes();  觸發用戶空間進程進入freeze狀態。當前進程不會被凍結。由於凍結失敗的進程會自動被解凍,因此不須要進行錯誤處理。
    /*
     * freeze_processes() automatically thaws every task if freezing
     * fails. So we need not do anything extra upon error.
     */
    if (error)
        return error;

    error = freeze_kernel_threads();  凍結內核線程
    /*
     * freeze_kernel_threads() thaws only kernel threads upon freezing
     * failure. So we have to thaw the userspace tasks ourselves.
     */
    if (error)  因爲freeze_kernel_threads凍結失敗,只會解凍內核線程。因此還須要對用戶空間進程進行解凍。
        thaw_processes();

    return error;
}

 

下面的階段都在suspend_devices_and_enter中,能夠看出這是一個對稱的流程,每一階段的suspend,都有對應的resume。

int suspend_devices_and_enter(suspend_state_t state)
{
    int error;
    bool wakeup = false;

    if (!sleep_state_supported(state))
        return -ENOSYS;

    error = platform_suspend_begin(state);
    if (error)
        goto Close;

    suspend_console();  關閉console子系統,暫停printk打印
    suspend_test_start();
    error = dpm_suspend_start(PMSG_SUSPEND); suspend_prepare(dpm_prepare)、suspend(dpm_suspend)兩階段
    if (error) {
        pr_err("PM: Some devices failed to suspend, or early wake event detected\n");
        log_suspend_abort_reason("Some devices failed to suspend, or early wake event detected");
        goto Recover_platform;
    }
    suspend_test_finish("suspend devices");
    if (suspend_test(TEST_DEVICES))
        goto Recover_platform;

    do {
        error = suspend_enter(state, &wakeup);  suspend_late(dpm_suspend_late)、suspend_noirq(dpm_suspend_noirq)、suspend_machine、resume_machine、resume_noirq(dpm_resume_noirq)、resume_early(dpm_resume_early)
    } while (!error && !wakeup && platform_suspend_again(state));

Resume_devices:
    suspend_test_start();
    dpm_resume_end(PMSG_RESUME);  resume(dpm_resume)、resume_complete(dpm_complete)
    suspend_test_finish("resume devices");
    trace_suspend_resume(TPS("resume_console"), state, true);
    resume_console();  打開console子系統,恢復printk打印。
    trace_suspend_resume(TPS("resume_console"), state, false);

Close:
    platform_resume_end(state);
    return error;

Recover_platform:
    platform_recover(state);
    goto Resume_devices;
}

還有必要過一下suspend_enter:

static int suspend_enter(suspend_state_t state, bool *wakeup)
{
    char suspend_abort[MAX_SUSPEND_ABORT_LEN];
    int error, last_dev;

    error = platform_suspend_prepare(state); 由於suspend_ops的prepare爲空,因此返回0
    if (error)
        goto Platform_finish;

    error = dpm_suspend_late(PMSG_SUSPEND);  suspend_late
    if (error) {
        last_dev = suspend_stats.last_failed_dev + REC_FAILED_NUM - 1;
        last_dev %= REC_FAILED_NUM;
        printk(KERN_ERR "PM: late suspend of devices failed\n");
        log_suspend_abort_reason("%s device failed to power down",
            suspend_stats.failed_devs[last_dev]);
        goto Platform_finish;
    }
    error = platform_suspend_prepare_late(state);  執行freeze_ops->prepare()
    if (error)
        goto Devices_early_resume;

    error = dpm_suspend_noirq(PMSG_SUSPEND);  suspend_noirq
    if (error) {
        last_dev = suspend_stats.last_failed_dev + REC_FAILED_NUM - 1;
        last_dev %= REC_FAILED_NUM;
        printk(KERN_ERR "PM: noirq suspend of devices failed\n");
        log_suspend_abort_reason("noirq suspend of %s device failed",
            suspend_stats.failed_devs[last_dev]);
        goto Platform_early_resume;
    }
    error = platform_suspend_prepare_noirq(state);
    if (error)
        goto Platform_wake;

    if (suspend_test(TEST_PLATFORM))
        goto Platform_wake;

    /*
     * PM_SUSPEND_FREEZE equals
     * frozen processes + suspended devices + idle processors.
     * Thus we should invoke freeze_enter() soon after
     * all the devices are suspended.
     */
    if (state == PM_SUSPEND_FREEZE) {  這裏是freeze和mem/standy差異所在
        trace_suspend_resume(TPS("machine_suspend"), state, true);
        freeze_enter(); 
        trace_suspend_resume(TPS("machine_suspend"), state, false);
        goto Platform_wake;
    }

    error = disable_nonboot_cpus(); 關閉全部boot-CPU以外的CPU
    if (error || suspend_test(TEST_CPUS)) {
        log_suspend_abort_reason("Disabling non-boot cpus failed");
        goto Enable_cpus;
    }

    arch_suspend_disable_irqs();
    BUG_ON(!irqs_disabled());

    error = syscore_suspend();  執行syscore_ops_list上全部syscore_ops的suspend回調函數
    if (!error) {
        *wakeup = pm_wakeup_pending();  檢查是否須要終止suspend流程?
        if (!(suspend_test(TEST_CORE) || *wakeup)) {
            trace_suspend_resume(TPS("machine_suspend"),
                state, true);
            error = suspend_ops->enter(state);  調用psci_suspend_ops的enter回調函數,關閉machine
            trace_suspend_resume(TPS("machine_suspend"),
                state, false);  !!!!!!!!!!!!!!!!這裏即爲喚醒以後的執行路徑了!!!!!!!!!!!!!!!!
            events_check_enabled = false;
        } else if (*wakeup) {
            pm_get_active_wakeup_sources(suspend_abort,
                MAX_SUSPEND_ABORT_LEN);
            log_suspend_abort_reason(suspend_abort);
            error = -EBUSY;
        }
        syscore_resume();  執行全部syscore_ops_list的resume回調函數
    }

    arch_suspend_enable_irqs();
    BUG_ON(irqs_disabled());

Enable_cpus:
    enable_nonboot_cpus();  打開全部non-boot CPU

Platform_wake:
    platform_resume_noirq(state);
    dpm_resume_noirq(PMSG_RESUME);  resume_noirq

Platform_early_resume:
    platform_resume_early(state);

Devices_early_resume:
    dpm_resume_early(PMSG_RESUME);  resume_early

Platform_finish:
    platform_resume_finish(state);
    return error;
}

3.2 suspend_prepare和suspend

DPM是Device Power Management的意思,這些操做都是針對非系統設備(non-sysdev)進行的。那什麼是系統設備呢?下面的machine應該就是所謂的sysdev了。

dpm_prepare實際上就是遍歷dpm_list上的全部設備,執行->prepare回調函數。若是設備存在->prepare回電函數,會將設備的prepare階段打印到ftrace。

int dpm_prepare(pm_message_t state)
{
    int error = 0;

    trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
    might_sleep();

    mutex_lock(&dpm_list_mtx);
    while (!list_empty(&dpm_list)) {  遍歷dpm_list
        struct device *dev = to_device(dpm_list.next);

        get_device(dev);
        mutex_unlock(&dpm_list_mtx);

        trace_device_pm_callback_start(dev, "", state.event);
        error = device_prepare(dev, state);  執行->prepare回調函數
        trace_device_pm_callback_end(dev, error);

        mutex_lock(&dpm_list_mtx);
        if (error) {
            if (error == -EAGAIN) {
                put_device(dev);
                error = 0;
                continue;
            }
            printk(KERN_INFO "PM: Device %s not prepared "
                "for power transition: code %d\n",
                dev_name(dev), error);
            put_device(dev);
            break;
        }
        dev->power.is_prepared = true;
        if (!list_empty(&dev->power.entry))
            list_move_tail(&dev->power.entry, &dpm_prepared_list);  移動設備到dpm_prepared_list
        put_device(dev);
    }
    mutex_unlock(&dpm_list_mtx);
    trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
    return error;
}

dpm_suspend遍歷dpm_prepared_list,這點和dpm_prepare有區別。而後執行設備的->suspend回調函數。

int dpm_suspend(pm_message_t state)
{
    ktime_t starttime = ktime_get();
    int error = 0;

    trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
    might_sleep();

    cpufreq_suspend();

    mutex_lock(&dpm_list_mtx);
    pm_transition = state;
    async_error = 0;
    while (!list_empty(&dpm_prepared_list)) { 基於dpm_prepared_list遍歷設備
        struct device *dev = to_device(dpm_prepared_list.prev);

        get_device(dev);
        mutex_unlock(&dpm_list_mtx);

        error = device_suspend(dev);  執行設備->suspend回調函數

        mutex_lock(&dpm_list_mtx);
        if (error) {
            pm_dev_err(dev, state, "", error);
            dpm_save_failed_dev(dev_name(dev));
            put_device(dev);
            break;
        }
        if (!list_empty(&dev->power.entry))
            list_move(&dev->power.entry, &dpm_suspended_list);  移動設備到dpm_suspended_list
        put_device(dev);
        if (async_error)
            break;
    }
    mutex_unlock(&dpm_list_mtx);
    async_synchronize_full();
    if (!error)
        error = async_error;
    if (error) {
        suspend_stats.failed_suspend++;
        dpm_save_failed_step(SUSPEND_SUSPEND);
    } else
        dpm_show_time(starttime, state, NULL);
    trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
    return error;
}

3.3 suspend_late和suspend_noirq

dpm_suspend_late基於dpm_suspended_list操做設備,因此這也須要函數之間順序執行。

int dpm_suspend_late(pm_message_t state)
{
    ktime_t starttime = ktime_get();
    int error = 0;

    trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
    mutex_lock(&dpm_list_mtx);
    pm_transition = state;
    async_error = 0;

    while (!list_empty(&dpm_suspended_list)) {  遍歷dpm_suspended_list列表
        struct device *dev = to_device(dpm_suspended_list.prev);

        get_device(dev);
        mutex_unlock(&dpm_list_mtx);

        error = device_suspend_late(dev);  執行->suspend_late回調函數

        mutex_lock(&dpm_list_mtx);
        if (!list_empty(&dev->power.entry))
            list_move(&dev->power.entry, &dpm_late_early_list);  移動設備到dpm_late_early_list

        if (error) {
            pm_dev_err(dev, state, " late", error);
            dpm_save_failed_dev(dev_name(dev));
            put_device(dev);
            break;
        }
        put_device(dev);

        if (async_error)
            break;
    }
    mutex_unlock(&dpm_list_mtx);
    async_synchronize_full();
    if (!error)
        error = async_error;
    if (error) {
        suspend_stats.failed_suspend_late++;
        dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
        dpm_resume_early(resume_event(state));
    } else {
        dpm_show_time(starttime, state, "late");
    }
    trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
    return error;
}

dpm_suspend_noirq基於dpm_late_early_list遍歷全部設備。首先阻止設備驅動接收中斷信息,而後執行->suspend_noirq回調函數。

int dpm_suspend_noirq(pm_message_t state)
{
    ktime_t starttime = ktime_get();
    int error = 0;

    trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
    cpuidle_pause();  暫停cpuidle功能,退出idle的CPU
    device_wakeup_arm_wake_irqs();  將具備wakeirq的設備設置成wakeup resource
    suspend_device_irqs();  關閉當前全部可以關閉的irq,置成IRQS_SUSPENDED。IRQF_NO_SUSPEND類型的wakeup中斷不能被關閉,而且做爲wakeup喚醒源的中斷不能被關閉。
    mutex_lock(&dpm_list_mtx);
    pm_transition = state;
    async_error = 0;

    while (!list_empty(&dpm_late_early_list)) {
        struct device *dev = to_device(dpm_late_early_list.prev);

        get_device(dev);
        mutex_unlock(&dpm_list_mtx);

        error = device_suspend_noirq(dev);  調用->suspend_noirq回調函數

        mutex_lock(&dpm_list_mtx);
        if (error) {
            pm_dev_err(dev, state, " noirq", error);
            dpm_save_failed_dev(dev_name(dev));
            put_device(dev);
            break;
        }
        if (!list_empty(&dev->power.entry))
            list_move(&dev->power.entry, &dpm_noirq_list);  移動設備到dpm_noirq_list
        put_device(dev);

        if (async_error)
            break;
    }
    mutex_unlock(&dpm_list_mtx);
    async_synchronize_full();
    if (!error)
        error = async_error;

    if (error) {
        suspend_stats.failed_suspend_noirq++;
        dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
        dpm_resume_noirq(resume_event(state));
    } else {
        dpm_show_time(starttime, state, "noirq");
    }
    trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
    return error;
}

3.4 suspend_machine和resume_machine

freeze和mem/standby在這部分是不一樣的。

mem/standby直接調用suspend_ops->enter進入對應的睡眠模式。

而freeze就要稍微複雜了:

static void freeze_enter(void)
{
    spin_lock_irq(&suspend_freeze_lock);
    if (pm_wakeup_pending())  檢查是否有wakeup信號在處理,若是有則退出當前流程。
        goto out;

    suspend_freeze_state = FREEZE_STATE_ENTER;
    spin_unlock_irq(&suspend_freeze_lock);

    get_online_cpus();
    cpuidle_resume();  容許使用cpuidle

    /* Push all the CPUs into the idle loop. */
    wake_up_all_idle_cpus();  強制全部CPU退出idle狀態
    pr_debug("PM: suspend-to-idle\n");
    /* Make the current CPU wait so it can enter the idle loop too. */
    wait_event(suspend_freeze_wait_head,
           suspend_freeze_state == FREEZE_STATE_WAKE);  等待FREEZE_STATE_WAKE事件,進入idle loop
    pr_debug("PM: resume from suspend-to-idle\n");  !!!!!!!!!!!!!!!!這裏即爲喚醒以後的執行路徑了!!!!!!!!!!!!!!!!
    cpuidle_pause();  暫停使用cpuidle
    put_online_cpus();

    spin_lock_irq(&suspend_freeze_lock);

out:
    suspend_freeze_state = FREEZE_STATE_NONE;
    spin_unlock_irq(&suspend_freeze_lock);
}

 

3.5 resume_noirq

執行dpm_noirq_list上設備的resume_noirq回調函數。

void dpm_resume_noirq(pm_message_t state)
{
    struct device *dev;
    ktime_t starttime = ktime_get();

    trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
    mutex_lock(&dpm_list_mtx);
    pm_transition = state;

    /*
     * Advanced the async threads upfront,
     * in case the starting of async threads is
     * delayed by non-async resuming devices.
     */
    list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
        reinit_completion(&dev->power.completion);
        if (is_async(dev)) {
            get_device(dev);
            async_schedule(async_resume_noirq, dev);
        }
    }

    while (!list_empty(&dpm_noirq_list)) {  遍歷dpm_noirq_list
        dev = to_device(dpm_noirq_list.next);
        get_device(dev);
        list_move_tail(&dev->power.entry, &dpm_late_early_list);  移動設備到下一級dpm_late_early_list
        mutex_unlock(&dpm_list_mtx);

        if (!is_async(dev)) {
            int error;

            error = device_resume_noirq(dev, state, false);
            if (error) {
                suspend_stats.failed_resume_noirq++;
                dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
                dpm_save_failed_dev(dev_name(dev));
                pm_dev_err(dev, state, " noirq", error);
            }
        }

        mutex_lock(&dpm_list_mtx);
        put_device(dev);
    }
    mutex_unlock(&dpm_list_mtx);
    async_synchronize_full();
    dpm_show_time(starttime, state, "noirq");
    resume_device_irqs();
    device_wakeup_disarm_wake_irqs();
    cpuidle_resume();
    trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
}

3.6 resume_early

執行前述dpm_late_early_list設備的resume_early回調函數,移動設備到dpm_suspended_list列表。

void dpm_resume_early(pm_message_t state)
{
    struct device *dev;
    ktime_t starttime = ktime_get();

    trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
    mutex_lock(&dpm_list_mtx);
    pm_transition = state;

    /*
     * Advanced the async threads upfront,
     * in case the starting of async threads is
     * delayed by non-async resuming devices.
     */
    list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
        reinit_completion(&dev->power.completion);
        if (is_async(dev)) {
            get_device(dev);
            async_schedule(async_resume_early, dev);
        }
    }

    while (!list_empty(&dpm_late_early_list)) {
        dev = to_device(dpm_late_early_list.next);
        get_device(dev);
        list_move_tail(&dev->power.entry, &dpm_suspended_list);
        mutex_unlock(&dpm_list_mtx);

        if (!is_async(dev)) {
            int error;

            error = device_resume_early(dev, state, false);
            if (error) {
                suspend_stats.failed_resume_early++;
                dpm_save_failed_step(SUSPEND_RESUME_EARLY);
                dpm_save_failed_dev(dev_name(dev));
                pm_dev_err(dev, state, " early", error);
            }
        }
        mutex_lock(&dpm_list_mtx);
        put_device(dev);
    }
    mutex_unlock(&dpm_list_mtx);
    async_synchronize_full();
    dpm_show_time(starttime, state, "early");
    trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
}

3.7 resume

執行全部dpm_suspended_list上設備的resume回調函數。

void dpm_resume(pm_message_t state)
{
    struct device *dev;
    ktime_t starttime = ktime_get();

    trace_suspend_resume(TPS("dpm_resume"), state.event, true);
    might_sleep();

    mutex_lock(&dpm_list_mtx);
    pm_transition = state;
    async_error = 0;

    list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
        reinit_completion(&dev->power.completion);
        if (is_async(dev)) {
            get_device(dev);
            async_schedule(async_resume, dev);
        }
    }

    while (!list_empty(&dpm_suspended_list)) {
        dev = to_device(dpm_suspended_list.next);
        get_device(dev);
        if (!is_async(dev)) {
            int error;

            mutex_unlock(&dpm_list_mtx);

            error = device_resume(dev, state, false);
            if (error) {
                suspend_stats.failed_resume++;
                dpm_save_failed_step(SUSPEND_RESUME);
                dpm_save_failed_dev(dev_name(dev));
                pm_dev_err(dev, state, "", error);
            }

            mutex_lock(&dpm_list_mtx);
        }
        if (!list_empty(&dev->power.entry))
            list_move_tail(&dev->power.entry, &dpm_prepared_list);
        put_device(dev);
    }
    mutex_unlock(&dpm_list_mtx);
    async_synchronize_full();
    dpm_show_time(starttime, state, NULL);

    cpufreq_resume();
    trace_suspend_resume(TPS("dpm_resume"), state.event, false);
}

3.8 resume_complete

執行全部dpm_prepared_list上設備的complete回調函數。至此dpm_complete結束全部非系統設備的睡眠。

void dpm_complete(pm_message_t state)
{
    struct list_head list;

    trace_suspend_resume(TPS("dpm_complete"), state.event, true);
    might_sleep();

    INIT_LIST_HEAD(&list);
    mutex_lock(&dpm_list_mtx);
    while (!list_empty(&dpm_prepared_list)) {
        struct device *dev = to_device(dpm_prepared_list.prev);

        get_device(dev);
        dev->power.is_prepared = false;
        list_move(&dev->power.entry, &list);
        mutex_unlock(&dpm_list_mtx);

        trace_device_pm_callback_start(dev, "", state.event);
        device_complete(dev, state);
        trace_device_pm_callback_end(dev, 0);

        mutex_lock(&dpm_list_mtx);
        put_device(dev);
    }
    list_splice(&list, &dpm_list);
    mutex_unlock(&dpm_list_mtx);
    trace_suspend_resume(TPS("dpm_complete"), state.event, false);
}

 

4 如何讓HiKey進入STR/STI並喚醒?

能夠經過配置GPIO做爲喚醒源,或者經過RTC做爲喚醒源,延時必定時間來喚醒。

檢查是否存在/sys/class/rtc/rtc0/wakealarm,入不存在則須要打開CONFIG_RTC_DRV_PL031。

寫入wakealarm的參數,表示在多少秒以後resume喚醒,退出suspend。

寫mem進入state,是系統進入suspend流程。

adb root && adb remount
adb shell "echo +10 > /sys/class/rtc/rtc0/wakealarm && echo mem > /sys/power/state"

 

5. suspend/resume的latency分析手段

5.1 analyze_suspend.py v3.0

在kernel的scripts中,這個工具能夠幫助內核和OS開發者優化suspend/resume時間。

在打開一系列內核選項以後,此工具就能夠執行suspend操做,而後抓取dmesg和ftrace數據知道resume結束。

這些數據會按照時間線顯示每一個設備,而且顯示佔用最多suspend/resume時間的設備或者子系統的調用關係詳圖。

執行工具後,會根據時間生成一個子目錄,裏面包含:html、dmesg和原始ftrace文件。

下面簡單看一下工具選項:

Options:
  [general]
    -h          Print this help text
    -v          Print the current tool version
    -verbose    Print extra information during execution and analysis
    -status     Test to see if the system is enabled to run this tool
    -modes      List available suspend modes  顯示當前支持的suspend模式
    -m mode     Mode to initiate for suspend ['freeze', 'mem', 'disk'] (default: mem)  設置進入何種模式的suspend
    -rtcwake t  Use rtcwake to autoresume after <t> seconds (default: disabled)  使用rtc來喚醒,參數是間隔時間
  [advanced]
    -f          Use ftrace to create device callgraphs (default: disabled)  基於ftrace生成調用關係圖
    -filter "d1 d2 ..." Filter out all but this list of dev names
    -x2         Run two suspend/resumes back to back (default: disabled)
    -x2delay t  Minimum millisecond delay <t> between the two test runs (default: 0 ms)
    -postres t  Time after resume completion to wait for post-resume events (default: 0 S)
    -multi n d  Execute <n> consecutive tests at <d> seconds intervals. The outputs will
                be created in a new subdirectory with a summary page.
  [utilities]
    -fpdt       Print out the contents of the ACPI Firmware Performance Data Table
    -usbtopo    Print out the current USB topology with power info
    -usbauto    Enable autosuspend for all connected USB devices
  [android testing]
    -adb binary Use the given adb binary to run the test on an android device.  參數須要給出adb路徑,工具就會對Android設備進行測試,並將結果pull出來。有一點須要注意,在此以前確保adb具備root權限。
                The device should already be connected and with root access.
                Commands will be executed on the device using "adb shell"
  [re-analyze data from previous runs] 針對以前測試數據從新分析
    -ftrace ftracefile  Create HTML output using ftrace input
    -dmesg dmesgfile    Create HTML output using dmesg (not needed for kernel >= 3.15)
    -summary directory  Create a summary of all test in this dir

在瞭解了工具使用方法以後,就能夠進行相關測試了。

5.1.1 Android

./analysze_suspend.py –modes –adb /usr/bin/adb獲取當前系統支持的suspend狀態。

['freeze', 'mem']

1.Android上測試STR,suspend/resume共5次,每次間隔20秒。

./analyze_suspend.py -adb  /usr/bin/adb -rtcwake 10 -multi 5 20 -f -m mem

2.Android上測試STI,suspend/resume共10次,每次間隔5秒。

./analyze_suspend.py -adb  /usr/bin/adb -rtcwake 10 -multi 5 20 -f -m freeze

測試結果能夠在以下得到:

https://github.com/arnoldlu/common-use/tree/master/tools/analyze_suspend/hikey_test

存在的問題:analyze_suspend.py不支持Android的rtcwakeup和callgraph。已經在以下fix:

https://github.com/arnoldlu/common-use/blob/master/tools/analyze_suspend/analyze_suspend.py

5.1.1.1 整體對比

下面是HiKey上測試結果,能夠看出兩個數據都不夠穩定。mem的suspend和resume平均值都比較高。

freeze相比mem的suspend/resume平均值提升了304.3ms/613.5ms。

image

image

5.1.1.2 是否suspend CPU

對好比下兩幅圖,明顯看出mem類型的suspend關閉了除CPU0以外的全部CPU;而freeze則沒有關閉任何CPU。

non-boot CPUs的suspend/resume時間就達到300ms/200ms。

image

image

同時從log中也能夠看出mem和freeze的主要區別就在因而否disabling/enabling non-boot CPU。其餘設備和子系統的suspend/resume時間基本一致。

同時還能夠看出mem的suspend後,系統的timestamp是中止的;而freeze的timestamp仍是一直在運行的。能夠得出freeze狀態持續的時間。

由於先寫rtcwake爲10s,而後進入睡眠,再喚醒,因此freeze時間是小於10s的。

[ 3385.642962] PM: suspend entry 1970-01-01 00:57:30.580909763 UTC
[ 3385.649165] PM: Syncing filesystems ... done.
[ 3385.661349] Freezing user space processes ...
[ 3385.671207] dwc2 f72c0000.usb: dwc2_hsotg_ep_stop_xfr: timeout DOEPCTL.EPDisable
[ 3385.678933] dwc2 f72c0000.usb: GINNakEff triggered
[ 3385.685718] (elapsed 0.019 seconds) done.
[ 3385.689860] Freezing remaining freezable tasks ... (elapsed 0.002 seconds) done.
[ 3385.700092] Suspending console(s) (use no_console_suspend to debug)
[ 3385.736020] PM: suspend of devices complete after 27.195 msecs
[ 3385.740811] PM: late suspend of devices complete after 4.765 msecs
[ 3385.743919] PM: noirq suspend of devices complete after 3.090 msecs
Disabling and Enabling non-boot CPUs
[ 3386.209126] PM: noirq resume of devices complete after 1.865 msecs
[ 3386.212066] PM: early resume of devices complete after 2.460 msecs
[ 3386.234729] mmc_host mmc0: Bus speed (slot 0) = 24800000Hz (slot req 400000Hz, actual 400000HZ div = 31)
[ 3386.311480] mmc_host mmc0: Bus speed (slot 0) = 51756522Hz (slot req 52000000Hz, actual 51756522HZ div = 0)
[ 3386.410411] mmc_host mmc2: Bus speed (slot 0) = 24800000Hz (slot req 400000Hz, actual 400000HZ div = 31)
[ 3386.458232] mmc_host mmc2: Bus speed (slot 0) = 24800000Hz (slot req 25000000Hz, actual 24800000HZ div = 0)
[ 3386.458729] PM: resume of devices complete after 246.646 msecs
[ 3386.818770] Restarting tasks ...
[ 3386.827026] done.
[ 3386.844139] PM: suspend exit 1970-01-01 00:57:40.624589167 UTC


[ 3471.760265] PM: Syncing filesystems ... done.
[ 3471.771897] Freezing user space processes ...
[ 3471.780407] dwc2 f72c0000.usb: dwc2_hsotg_ep_stop_xfr: timeout DOEPCTL.EPDisable
[ 3471.788105] dwc2 f72c0000.usb: GINNakEff triggered
[ 3471.794916] (elapsed 0.018 seconds) done.
[ 3471.799078] Freezing remaining freezable tasks ... (elapsed 0.002 seconds) done.
[ 3471.809320] Suspending console(s) (use no_console_suspend to debug)
[ 3471.847947] PM: suspend of devices complete after 29.905 msecs
[ 3471.852473] PM: late suspend of devices complete after 4.497 msecs
[ 3471.855611] PM: noirq suspend of devices complete after 3.120 msecs

[ 3481.034722] PM: noirq resume of devices complete after 1.945 msecs
[ 3481.037992] PM: early resume of devices complete after 2.694 msecs
[ 3481.062803] mmc_host mmc0: Bus speed (slot 0) = 24800000Hz (slot req 400000Hz, actual 400000HZ div = 31)
[ 3481.137795] mmc_host mmc0: Bus speed (slot 0) = 51756522Hz (slot req 52000000Hz, actual 51756522HZ div = 0)
[ 3481.234796] mmc_host mmc2: Bus speed (slot 0) = 24800000Hz (slot req 400000Hz, actual 400000HZ div = 31)
[ 3481.278601] mmc_host mmc2: Bus speed (slot 0) = 24800000Hz (slot req 25000000Hz, actual 24800000HZ div = 0)
[ 3481.279396] PM: resume of devices complete after 241.388 msecs
[ 3481.358513] Restarting tasks ... done.
[ 3481.377766] PM: suspend exit 1970-01-01 00:59:15.332218333 UTC

 

5.1.1.3 resume_console節省時間

對比resume_console能夠發現,mem要比freeze多210ms。

5.1.2 Ubuntu

此工具在Ubuntu上顯示了更強大的功能。

支持了callgraph功能以後,更能清晰地分析每一個設備或者子系統的suspend/resume佔用的時間。

sudo ./analyze_suspend.py -rtcwake 10 -multi 5 20 -f -m mem
sudo ./analyze_suspend.py -rtcwake 10 -multi 5 20 -f -m freeze

在對比兩種不一樣suspend模式後,發現freeze花費的時間要比mem少。這也符合預期,可是沒有功耗數據?_?。

image

image

下面着重分析一下如何基於此工具分析。

5.1.3 工具界面整體分析

最上面顯示Kernel Suspend Time和Kernel Resume Time,能夠從整體上查看是否有回退或者進步。

再下面是一些縮放按鈕。

而後就是基於timeline的圖表,比對顏色示意圖,能夠清晰看出suspend prepare、suspend、suspend late、suspend irq、suspend machine、resume machine、resume irq、resume early、resume和resume complete的分佈。

最下面是每一個模塊、子系統的詳細函數調用圖以及開始時間、消耗時間。

image

5.1.4 子系統、模塊詳細分析

選中一個模塊,會在最下面顯示詳細的模塊在suspend/resume各個階段消費的時間,以及函數調用關係圖。

image

5.1.5 縮放查看細節

ZOOM IN放大,ZOOMOUT縮小,ZOOM 1:1恢復原始尺寸。

經過在timeline圖表,放大能夠查看到更小的模塊消耗的時間。從宏觀到模塊,再到函數消耗時間,逐步細化,頗有利於分析。

image

若是發現某個函數佔用時間較大,能夠逐級展開。知道發現最終佔用較大的函數,發現問題所在。

image

5.1.6 工具代碼分析

首先從入口main開始,和大多數工具同樣開始都是解析命令選項,打印help信息;將全部的待測對象參數和測試參數保存在sysvals;

# ----------------- MAIN --------------------
# exec start (skipped if script is loaded as library)
if __name__ == '__main__':
    cmd = ''
    cmdarg = ''
    multitest = {'run': False, 'count': 0, 'delay': 0}
    # loop through the command line arguments
    args = iter(sys.argv[1:])
    for arg in args:
        …

    # just run a utility command and exit
    if(cmd != ''):
        if(cmd == 'status'):
            statusCheck()
        elif(cmd == 'fpdt'):
            if(sysvals.android):
                doError('cannot read FPDT on android device', False)
            getFPDT(True)
        elif(cmd == 'usbtopo'):
            if(sysvals.android):
                doError('cannot read USB topology '+\
                    'on an android device', False)
            detectUSB(True)
        elif(cmd == 'modes'):
            modes = getModes()
            print modes
        elif(cmd == 'usbauto'):
            setUSBDevicesAuto()
        elif(cmd == 'summary'):
            print("Generating a summary of folder \"%s\"" % cmdarg)
            runSummary(cmdarg, True)
        sys.exit()

    # run test on android device
    if(sysvals.android):  註釋此段代碼能夠在Android上支持callgraph
        #if(sysvals.usecallgraph):
        #    doError('ftrace (-f) is not yet supported '+\
        #        'in the android kernel', False)
        if(sysvals.notestrun):
            doError('cannot analyze test files on the '+\
                'android device', False)

    # if instructed, re-analyze existing data files
    if(sysvals.notestrun):  分析已有數據文件,不須要從新測試
        rerunTest()
        sys.exit()

    # verify that we can run a test
    if(not statusCheck()):  檢查測試條件是否知足
        print('Check FAILED, aborting the test run!')
        sys.exit()

    if multitest['run']:  連續屢次測試
        # run multiple tests in a separte subdirectory
        s = 'x%d' % multitest['count']
        subdir = datetime.now().strftime('suspend-'+s+'-%m%d%y-%H%M%S')
        os.mkdir(subdir)
        for i in range(multitest['count']):
            if(i != 0):
                print('Waiting %d seconds...' % (multitest['delay']))
                time.sleep(multitest['delay'])
            print('TEST (%d/%d) START' % (i+1, multitest['count']))
            runTest(subdir)  進行單次測試
            print('TEST (%d/%d) COMPLETE' % (i+1, multitest['count']))
        runSummary(subdir, False)  生成summary.html
    else:
        # run the test in the current directory
        runTest(".")

sysvals.android表示是否在Android設備進行測試。

sysvals.usecallgraph表示是否生成函數調用關係圖。

sysvals.rtcwake表示是否使用rtc進行喚醒。

針對Ubuntu之類的host設備,測試進行的很順利。可是針對Android設備,在callgraph還存在一點問題。

run_Test無疑做爲核心,收集log信息(ftrace、dmesg),執行suspend/resume,生成輸出文件(txt、html)。

def runTest(subdir):
    global sysvals

    # prepare for the test
    if(not sysvals.android):  針對不一樣的待測設備,初始化ftrace
        initFtrace()
    else:
        initFtraceAndroid()
    sysvals.initTestOutput(subdir)  生成輸出目錄,輸出文件名等。

    vprint('Output files:\n    %s' % sysvals.dmesgfile)
    if(sysvals.usecallgraph or
        sysvals.usetraceevents or
        sysvals.usetraceeventsonly):
        vprint('    %s' % sysvals.ftracefile)
    vprint('    %s' % sysvals.htmlfile)

    # execute the test  執行測試,實際上命令內容基本一致。只是針對Android設備,增長了adb shell '…'。
    if(not sysvals.android):
        executeSuspend()
    else:
        executeAndroidSuspend()

    # analyze the data and create the html output
    print('PROCESSING DATA')
    if(sysvals.usetraceeventsonly):  3.15以後的版本,只須要經過ftrace便可獲取足夠信息。以前的版本的數據都存在dmesg中。
        # data for kernels 3.15 or newer is entirely in ftrace
        testruns = parseTraceLog()
    else:
        # data for kernels older than 3.15 is primarily in dmesg
        testruns = loadKernelLog()
        for data in testruns:
            parseKernelLog(data)
        if(sysvals.usecallgraph or sysvals.usetraceevents):
            appendIncompleteTraceLog(testruns)
    createHTML(testruns)  根據解析的數據生成html矢量圖表

executeAndroidSuspend在Android設備上操做sysfs節點來配置ftrace,抓取log,suspend/resume,而後將log拉到主機。

def executeAndroidSuspend():
    global sysvals

    # check to see if the display is currently off
    tp = sysvals.tpath
    out = os.popen(sysvals.adb+\
        ' shell dumpsys power | grep mScreenOn').read().strip()
    # if so we need to turn it on so we can issue a new suspend
    if(out.endswith('false')):
        print('Waking the device up for the test...')
        # send the KEYPAD_POWER keyevent to wake it up
        os.system(sysvals.adb+' shell input keyevent 26')
        # wait a few seconds so the user can see the device wake up
        time.sleep(3)
    # execute however many s/r runs requested
    for count in range(1,sysvals.execcount+1):
        # clear the kernel ring buffer just as we start
        os.system(sysvals.adb+' shell dmesg -c > /dev/null 2>&1')  清空dmesg
        # start ftrace
        if(sysvals.usetraceevents):
            print('START TRACING')
            os.system(sysvals.adb+" shell 'echo 1 > "+tp+"tracing_on'")  開始ftrace抓取
        # initiate suspend
        for count in range(1,sysvals.execcount+1):
            if(sysvals.usetraceevents):
                os.system(sysvals.adb+\
                    " shell 'echo SUSPEND START > "+tp+"trace_marker'")  寫SUSPEND START到ftrace,做爲開始標記。後面解析log,會以此爲標記。
            if(sysvals.rtcwake):
                print('SUSPEND START')
                print('will autoresume in %d seconds' % sysvals.rtcwaketime)
                os.system(sysvals.adb+" shell 'echo +%d > /sys/class/rtc/rtc0/wakealarm'"%(sysvals.rtcwaketime))  設置wakeup resource
            else:
                print('SUSPEND START (press a key to resume)')

            os.system(sysvals.adb+" shell 'echo "+sysvals.suspendmode+\
                " > "+sysvals.powerfile+"'")  進入suspend,以後就是resume
            # execution will pause here, then adb will exit
            while(True):  輪詢adb shell pwd判斷設備是否被喚醒
                check = os.popen(sysvals.adb+\
                    ' shell pwd 2>/dev/null').read().strip()
                if(len(check) > 0):
                    break
                time.sleep(1)
            if(sysvals.usetraceevents):
                os.system(sysvals.adb+" shell 'echo RESUME COMPLETE > "+tp+\
                    "trace_marker'")  寫RESUME COMPLETE到ftrace,做爲結束標記
        # return from suspend
        print('RESUME COMPLETE')
        # stop ftrace
        if(sysvals.usetraceevents):
            os.system(sysvals.adb+" shell 'echo 0 > "+tp+"tracing_on'") 關閉ftrace功能
            print('CAPTURING TRACE')
            os.system('echo "'+sysvals.teststamp+'" > '+sysvals.ftracefile)
            os.system(sysvals.adb+' shell cat '+tp+\
                'trace >> '+sysvals.ftracefile)  將/sys/kernel/debug/tracing/trace內容保存到本地log
        # grab a copy of the dmesg output
        print('CAPTURING DMESG')
        os.system('echo "'+sysvals.teststamp+'" > '+sysvals.dmesgfile)
        os.system(sysvals.adb+' shell dmesg >> '+sysvals.dmesgfile)  將dmesg保存到本地

parseTraceLog用於解析ftrace log,phase的判斷是依據suspend_resume關鍵詞;每一個模塊的開始結束是以device_pm_callback_start/device_pm_callback_end做爲判斷;還調用FTraceCallGraph進行函數調用關係的解析。

createHTML是這個工具真正NB的地方,對parseTraceLog結果進行了可視化,生成可縮放、查看細節的html文件。

 

6 對工具的改進

雖然工具很是強大,可是在使用中仍是有一些視角沒有覆蓋到。因此作了一些改進。

在Android上使能rtcwake;在Android上使能callgraph;針對屢次測試生成csv比較不一樣phase消耗時間,比summary.html更細化;這對每次測試給出Phase時間和每一個Phase內Device消耗時間。

6.1 Android上使能rtcwake

https://github.com/arnoldlu/common-use/commit/a862d8c2a4f9bd005c516c6b61b394386b882217

能夠在Android上使用rtc做爲喚醒源,能夠在沒有實體按鍵的設備上進行測試。

6.2 Android上使能callgraph

https://github.com/arnoldlu/common-use/commit/f8e288753a472cf48ccc0e9d7ffc67978c7d165e

若是沒有callgraph只能顯示Phase級別的信息,不能顯示每一個device的信息以及內部函數耗費的時間。

6.3 單次測試summary結果

https://github.com/arnoldlu/common-use/commit/53c270669bb0dfaada53e29852999d5367ec65da

在每次測試目錄下,生成一個summary_phase_dev.csv文件。能夠直觀的看到不一樣Phase、不一樣device消耗的時間。

image

若是想要發現那個模塊消耗最大時間,可使用Excel的Filter功能。好比想看suspend_prepare下Device消耗時間有大到小排列。

這樣就能夠找出每一個Phase中消耗資源大戶。

image

6.4 屢次測試summary結果

https://github.com/arnoldlu/common-use/commit/d162c4827a0cdc50fe94d3f1303af682b387dc3d

生成summary_phase.csv文件,按每次測試的不一樣phase顯示耗費時間。

能夠比較不一樣測試phase的時間耗費,看出哪個phase存在回退現象。

image

6.5 suspend/resume起止時間點判斷

analyze_suspend.py在解析log的時候,以SUSPEND START做爲起點,以RESUME COMPLETE爲終點。

在發送SUSPEND START以後,觸發suspend動做。在這期間,若是host存在必定搶佔,會增長suspend時間。

而後通poll設備的adb狀態,來判斷是否resume。一方面,adb可用狀態要在resume結束以後,另外一方面,在最壞的狀況下,可能存在1s的偏差,這對於毫秒級的resume來講是很是嚴重的一個結果。

最後發送RESUME COMPLETE做爲結束。

if(sysvals.usetraceevents):
    os.system(sysvals.adb+\
        " shell 'echo SUSPEND START > "+tp+"trace_marker'")
print('SUSPEND START (press a key on the device to resume)')
os.system(sysvals.adb+" shell 'echo "+sysvals.suspendmode+\
    " > "+sysvals.powerfile+"'")
# execution will pause here, then adb will exit
while(True):
    check = os.popen(sysvals.adb+\
        ' shell pwd 2>/dev/null').read().strip()
    if(len(check) > 0):
        break
    time.sleep(1)
if(sysvals.usetraceevents):
    os.system(sysvals.adb+" shell 'echo RESUME COMPLETE > "+tp+\
        "trace_marker'")

更好的方式是在enter_state的開頭結尾加ftrace,而後解析的時候以此爲標記。

@@ -486,6 +496,7 @@ static int enter_state(suspend_state_t state)
{
        int error;
 
+       trace_suspend_resume(TPS("enter_state"), state, true);
        trace_suspend_resume(TPS("suspend_enter"), state, true);
        if (state == PM_SUSPEND_FREEZE) {
#ifdef CONFIG_PM_DEBUG
@@ -532,6 +543,7 @@ static int enter_state(suspend_state_t state)
        suspend_finish();
  Unlock:
        mutex_unlock(&pm_mutex);
+       trace_suspend_resume(TPS("enter_state"), state, false);
        return error;
}

7 分析步驟

本着從宏觀到微觀的進階,一步步分找出能夠優化的點。

下面是從開始一次測試到每次測試到suspend/resume不一樣phase,再到每一個phase裏面device callback的關係。

image

下面是每一次正常suspend/resume的流程,以前每一個階段函數分析也能夠看出他們的對稱關係。

image

在修改了工具對於suspend和resume時間判斷的bug事後,獲得了一組的數據。

image

分析一下穩定性,均方差比較小,還算比較穩定。數據穩定以後,就能夠進行詳細分析了。

image

下面查看每次測試的每一個phase數據,能夠看出每一個phase數據的穩定性,以及每一個phase費時佔比。找出費時大戶,suspend_prepare、suspend、suspend_machine、resume_machine、resume、resume_complete。

image

針對上述六個phase,列出Top 10設備或者子系統。

從下圖能夠看出,freeze_processes、sync_filesystems、mmc0、mmc二、CUP0~七、resume_console、tsensor是須要重點分析的設備。

imageimage

imageimage

imageimage

不區分phase列出Top 30以下,下面逐一分析可優化的空間。

image

7.1 resume_console

adb shell 'echo N > /sys/module/printk/parameters/console_suspend'
adb shell 'cat /sys/module/printk/parameters/console_suspend'

先看一下resume_console流程函數:

void resume_console(void)
{
    if (!console_suspend_enabled)
        return;
    down_console_sem();  獲取console_sem和console_lock_dep_map
    console_suspended = 0;
    console_unlock(); 
}

經過分析ftrace發現,主要時間消耗在console_unlock中。由於在console_lock被佔用期間,有至關一部分由printk緩存的log。因此在釋放鎖以前須要將其處理掉。

void console_unlock(void)
{
    static char ext_text[CONSOLE_EXT_LOG_MAX];
    static char text[LOG_LINE_MAX + PREFIX_MAX];
    static u64 seen_seq;
    unsigned long flags;
    bool wake_klogd = false;
    bool do_cond_resched, retry;

    trace_console_lock("console_unlock start", strlen("console_unlock start"));\
    if (console_suspended) {
        up_console_sem();
        return;
    }

    /*
     * Console drivers are called under logbuf_lock, so
     * @console_may_schedule should be cleared before; however, we may
     * end up dumping a lot of lines, for example, if called from
     * console registration path, and should invoke cond_resched()
     * between lines if allowable.  Not doing so can cause a very long
     * scheduling stall on a slow console leading to RCU stall and
     * softlockup warnings which exacerbate the issue with more
     * messages practically incapacitating the system.
     */
    do_cond_resched = console_may_schedule;
    console_may_schedule = 0;

    /* flush buffered message fragment immediately to console */
    console_cont_flush(text, sizeof(text));
again:
    for (;;) {  若是默認的LOGLEVEL定的比較高,即優先級低,則會有至關多的log須要打印。佔用不少時間。
        …
    }
    console_locked = 0;

    /* Release the exclusive_console once it is used */
    if (unlikely(exclusive_console))
        exclusive_console = NULL;

    raw_spin_unlock(&logbuf_lock);

    up_console_sem();  釋放console_sem和console_lock_dep_map

    /*
     * Someone could have filled up the buffer again, so re-check if there's
     * something to flush. In case we cannot trylock the console_sem again,
     * there's a new owner and the console_unlock() from them will do the
     * flush, no worries.
     */
    raw_spin_lock(&logbuf_lock);
    retry = console_seq != log_next_seq;
    raw_spin_unlock_irqrestore(&logbuf_lock, flags);

    if (retry && console_trylock())
        goto again;

    if (wake_klogd)
        wake_up_klogd();
    trace_console_lock("console_unlock end", strlen("console_unlock end"));\
}

那麼問題就變得簡單了,減小printk量就能夠了。

經過cat /proc/sys/kernel/printk能夠獲得。在kernel/sysctl.c中有其實現。

7    4    1    7

這四個值分別對應:

#define console_loglevel (console_printk[0])
#define default_message_loglevel (console_printk[1])
#define minimum_console_loglevel (console_printk[2])
#define default_console_loglevel (console_printk[3])

又對應到:

int console_printk[4] = {
    CONSOLE_LOGLEVEL_DEFAULT,    /* console_loglevel */
    MESSAGE_LOGLEVEL_DEFAULT,    /* default_message_loglevel */
    CONSOLE_LOGLEVEL_MIN,        /* minimum_console_loglevel */
    CONSOLE_LOGLEVEL_DEFAULT,    /* default_console_loglevel */
};

/* We show everything that is MORE important than this.. */
#define CONSOLE_LOGLEVEL_SILENT  0 /* Mum's the word */
#define CONSOLE_LOGLEVEL_MIN     1 /* Minimum loglevel we let people use */
#define CONSOLE_LOGLEVEL_QUIET     4 /* Shhh ..., when booted with "quiet" */
#define CONSOLE_LOGLEVEL_DEFAULT 7 /* anything MORE serious than KERN_DEBUG */
#define CONSOLE_LOGLEVEL_DEBUG    10 /* issue debug messages */
#define CONSOLE_LOGLEVEL_MOTORMOUTH 15    /* You can't shut this one up */

可知只要內核log優先級高於KERN_DEBUG都會被打印。由下表可知幾乎全部的log都會被打印。這就會形成printk至關繁忙,console_unlock會處理至關多信息。

#define KERN_EMERG    KERN_SOH "0"    /* system is unusable */
#define KERN_ALERT    KERN_SOH "1"    /* action must be taken immediately */
#define KERN_CRIT    KERN_SOH "2"    /* critical conditions */
#define KERN_ERR    KERN_SOH "3"    /* error conditions */
#define KERN_WARNING    KERN_SOH "4"    /* warning conditions */
#define KERN_NOTICE    KERN_SOH "5"    /* normal but significant condition */
#define KERN_INFO    KERN_SOH "6"    /* informational */
#define KERN_DEBUG    KERN_SOH "7"    /* debug-level messages */

#define KERN_DEFAULT    KERN_SOH "d"    /* the default kernel loglevel */

想解決也很簡單,提升console_loglevel的優先級。

diff --git a/kernel/printk/printk.c b/kernel/printk/printk.c
old mode 100644
new mode 100755
index e7e586b..b927d67
--- a/kernel/printk/printk.c
+++ b/kernel/printk/printk.c
@@ -60,7 +60,7 @@ extern void printascii(char *);
#endif
 
int console_printk[4] = {
-       CONSOLE_LOGLEVEL_DEFAULT,       /* console_loglevel */
+       CONSOLE_LOGLEVEL_QUIET, /* console_loglevel */
        MESSAGE_LOGLEVEL_DEFAULT,       /* default_message_loglevel */
        CONSOLE_LOGLEVEL_MIN,           /* minimum_console_loglevel */
        CONSOLE_LOGLEVEL_DEFAULT,       /* default_console_loglevel */

在進行修改後,再來進行對比測試。能夠看出消耗時間獲得顯著提高,優化後的resume_complete時間基本上能夠忽略不計。

7, mem
    Line 748: resume_complete,resume_console[3],248.54900000002544
    Line 748: resume_complete,resume_console[3],248.6340000000382
    Line 748: resume_complete,resume_console[3],248.26499999994667
    Line 748: resume_complete,resume_console[3],248.3510000000706
    Line 748: resume_complete,resume_console[3],248.42499999999745

7, freeze
    Line 996: resume_complete,resume_console[1],76.18400000001202
    Line 996: resume_complete,resume_console[1],76.19500000009793
    Line 996: resume_complete,resume_console[1],76.3280000001032
    Line 996: resume_complete,resume_console[1],76.1689999999362
    Line 996: resume_complete,resume_console[1],76.19999999997162

 

4, freeze
    Line 996: resume_complete,resume_console[1],0.1010000000007949
    Line 996: resume_complete,resume_console[1],0.10499999999069587
    Line 996: resume_complete,resume_console[1],0.09799999997994746
    Line 996: resume_complete,resume_console[1],0.1010000000007949
    Line 996: resume_complete,resume_console[1],0.10000000003174137

4, mem
    Line 749: resume_complete,resume_console[3],0.3370000000586515
    Line 749: resume_complete,resume_console[3],0.33800000005612674
    Line 749: resume_complete,resume_console[3],0.37700000007134804
    Line 749: resume_complete,resume_console[3],0.3359999999474894
    Line 749: resume_complete,resume_console[3],0.3429999999298161

7.2 mmc suspend/resuem分析

從下圖可知,mmc相關suspend/resume主要在mmc0:0001和mmc2:0001兩個設備的suspend/resume。下面重點分析這兩個設備的suspend/resume回調函數。

image

在執行suspend過程當中,先將bus上面的設備driver先suspend,而後在suspend bus。

在resume時,過程相反,先bus resume,而後再逐個設備driver resume。

 

mmc0:0001

那就來看看bus和各個設備耗費的時間:

4013.868837 |   4)    sh-4511     |               |  /* device_pm_callback_start: mmcblk mmc0:0001, parent: mmc0, [suspend] */
4013.868893 |   4)    sh-4511     |               |  /* device_pm_callback_end: mmcblk mmc0:0001, err=0 */
4013.869000 |   4)    sh-4511     |               |  /* device_pm_callback_start: block mmcblk0, parent: mmc0:0001, [suspend] */
4013.869053 |   4)    sh-4511     |               |  /* device_pm_callback_end: block mmcblk0, err=0 */
4013.889229 |   5)    sh-4511     |               |  /* device_pm_callback_start: mmcblk mmc0:0001, parent: mmc0, bus [suspend] */
4013.914631 |   0)    sh-4511     |               |  /* device_pm_callback_end: mmcblk mmc0:0001, err=0 */
4022.787571 |   0)    sh-4511     |               |  /* device_pm_callback_start: mmcblk mmc0:0001, parent: mmc0, bus [resume] */
4022.886749 |   0)    sh-4511     |               |  /* device_pm_callback_end: mmcblk mmc0:0001, err=0 */
4023.059198 |   0)    sh-4511     |               |  /* device_pm_callback_start: block mmcblk0, parent: mmc0:0001, [resume] */
4023.059270 |   0)    sh-4511     |               |  /* device_pm_callback_end: block mmcblk0, err=0 */
4023.059398 |   0)    sh-4511     |               |  /* device_pm_callback_start: mmcblk mmc0:0001, parent: mmc0, [resume] */
4023.059830 |   0)    sh-4511     |               |  /* device_pm_callback_end: mmcblk mmc0:0001, err=0 */

能夠看出driver的suspend/resume並無耗費太多時間,主要在mmc bus的suspend/resume耗費了太多時間。

在drivers/mmc/core/bus.c中

static struct bus_type mmc_bus_type = {
    .name        = "mmc",
    .dev_groups    = mmc_dev_groups,
    .match        = mmc_bus_match,
    .uevent        = mmc_bus_uevent,
    .probe        = mmc_bus_probe,
    .remove        = mmc_bus_remove,
    .shutdown    = mmc_bus_shutdown,
    .pm        = &mmc_bus_pm_ops,
};

mmc_bus_pm_bus對應的suspend/resume函數以下:

static const struct dev_pm_ops mmc_bus_pm_ops = {
    SET_RUNTIME_PM_OPS(mmc_runtime_suspend, mmc_runtime_resume, NULL)
    SET_SYSTEM_SLEEP_PM_OPS(mmc_bus_suspend, mmc_bus_resume)
};

mmc bus的suspend/resume以下:

static int mmc_bus_suspend(struct device *dev)
{
    struct mmc_card *card = mmc_dev_to_card(dev);
    struct mmc_host *host = card->host;
    int ret;

    ret = pm_generic_suspend(dev);  對應設備驅動的suspend回調函數。
    if (ret)
        return ret;

    ret = host->bus_ops->suspend(host);   這裏的host指的是mmc_host,bus_ops指的是mmc_ops。
    return ret;
}

static int mmc_bus_resume(struct device *dev)
{
    struct mmc_card *card = mmc_dev_to_card(dev);
    struct mmc_host *host = card->host;
    int ret;

    ret = host->bus_ops->resume(host);  這裏的host指的是mmc_host,bus_ops指的是mmc_ops。


    if (ret)
        pr_warn("%s: error %d during resume (card was removed?)\n",
            mmc_hostname(host), ret);

    ret = pm_generic_resume(dev);  對應設備的驅動的resume回調函數。
    return ret;
}

pm_generic_suspend和pm_generic_resume是對子系統設備的通用回調函數。

int pm_generic_suspend(struct device *dev)
{
    const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

    return pm && pm->suspend ? pm->suspend(dev) : 0;
}

int pm_generic_resume(struct device *dev)
{
    const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

    return pm && pm->resume ? pm->resume(dev) : 0;
}

從中能夠看出,若是對應設備存在dev->driver->pm->suspend和dev->driver->pm->resume則,調用回調函數。

mmc_bus_suspend

mmc_bus_suspend花費了大概25.4ms。下面是ftrace中截取的一段,從中能夠看出時間主要消耗在struct mmc_bus_ops mmc_ops的.suspend回調函數。

/*            */   mmc_bus_suspend() {
/*            */     pm_generic_suspend() {
/*! 307.552 us*/     }
/*            */     mmc_suspend() {
/** 25060.78 us*/      } /* mmc_suspend */
/** 25378.28 us*/    } /* mmc_bus_suspend */

mmc_bus_resume

mmc_resume消耗了大部分時間,整個流程才99.158ms。

/*              */   mmc_bus_resume() {
/*              */     mmc_resume() {
/* * 97167.39 us*/     }
/*              */     pm_generic_resume() {
/* # 1980.104 us*/     }
/* * 99158.12 us*/   }

mmc_suspend

對應的host->bus_ops,即mmc_ops。在host下的設備都suspend以後,suspend mmc_host。

在mmc_host resume以後,才能進行設備的resume。

static const struct mmc_bus_ops mmc_ops = {
    .remove = mmc_remove,
    .detect = mmc_detect,
    .suspend = mmc_suspend,
    .resume = mmc_resume,
    .runtime_suspend = mmc_runtime_suspend,
    .runtime_resume = mmc_runtime_resume,
    .alive = mmc_alive,
    .shutdown = mmc_shutdown,
    .reset = mmc_reset,
};

經過分析ftrace.txt文件,發現其中msleep花費了17.1ms,這裏是存在問題的。

int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
        unsigned int timeout_ms, bool use_busy_signal, bool send_status,
        bool ignore_crc)
{
    struct mmc_host *host = card->host;
    int err;
    struct mmc_command cmd = {0};
    unsigned long timeout;
    u32 status = 0;
    bool use_r1b_resp = use_busy_signal;

    mmc_retune_hold(host);


        /*
         * We are not allowed to issue a status command and the host
         * does'nt support MMC_CAP_WAIT_WHILE_BUSY, then we can only
         * rely on waiting for the stated timeout to be sufficient.
         */
        if (!send_status) {
            mmc_delay(timeout_ms);
            goto out;
        }


}

mmc_resume

經過分析ftrece.txt,能夠發現mmc_resume存在4個msleep,共消耗了12646.35 +14260.78 +13881.66 +15093.22 =55.882 ms。

關於mmc_ops的suspend/resume/runtime_suspend/runtime_resume的探討

先來看看這四個函數的,其流程受到MMC_CAP_AGGRESSIVE_PM和MMC_CAP_RUNTIME_RESUME兩個flag的控制。執行的實體都是_mmc_suspend、_mmc_resume。

static int mmc_suspend(struct mmc_host *host)
{
    int err;

    err = _mmc_suspend(host, true);
    if (!err) {
        pm_runtime_disable(&host->card->dev);
        pm_runtime_set_suspended(&host->card->dev);
    }

    return err;
}

static int mmc_resume(struct mmc_host *host)
{
    int err = 0;

    if (!(host->caps & MMC_CAP_RUNTIME_RESUME)) {
        err = _mmc_resume(host);
        pm_runtime_set_active(&host->card->dev);
        pm_runtime_mark_last_busy(&host->card->dev);
    }
    pm_runtime_enable(&host->card->dev);

    return err;
}


static int mmc_runtime_suspend(struct mmc_host *host)
{
    int err;

    if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
        return 0;

    err = _mmc_suspend(host, true);
    if (err)
        pr_err("%s: error %d doing aggressive suspend\n",
            mmc_hostname(host), err);

    return err;
}


static int mmc_runtime_resume(struct mmc_host *host)
{
    int err;

    if (!(host->caps & (MMC_CAP_AGGRESSIVE_PM | MMC_CAP_RUNTIME_RESUME)))
        return 0;

    err = _mmc_resume(host);
    if (err)
        pr_err("%s: error %d doing aggressive resume\n",
            mmc_hostname(host), err);

    return 0;
}

1.若是兩flag都沒有定義,則runtime_suspend和runtim_resume都是空函數。起做用的就是跟隨系統的suspend/resume流程。

2.若是隻定義了MMC_CAP_RUNTIME_RESUME,則不會runtime_suspend。而且在系統resume的時候,不會執行resume回調函數。只會在根據須要執行runtime_resume。使用runtime_resume代替了resume。

3.若是隻定義了MMC_CAP_AGGRESSIVE_PM ,則suspend/resume跟隨系統suspend/resume流程。而且runtime_suspend/resume_resume也根據實際狀況執行。一切正常。

4.若是二者都定義了,既能夠suspend也能夠runtime_suspend,可是隻能runtime_resume,不能跟隨系統resume流程執行resume回調函數。

也就是說MMC_CAP_AGGRESSIVE_PM 則runtime_suspend/runtime_resume均可用,MMC_CAP_RUNTIME_RESUME則只能使用runtime_resume執行resume功能。

 

那麼就來看一下,在應用了MMC_CAP_RUNTIME_RESUME以後效果如何。

mmc0:0001增長runtime-suspend屬性:

diff --git a/arch/arm64/boot/dts/hisilicon/hi6220.dtsi b/arch/arm64/boot/dts/hisilicon/hi6220.dtsi
old mode 100644
new mode 100755
index 09e2c71..2cec392
--- a/arch/arm64/boot/dts/hisilicon/hi6220.dtsi
+++ b/arch/arm64/boot/dts/hisilicon/hi6220.dtsi
@@ -801,6 +801,7 @@
                        clock-names = "ciu", "biu";
                        resets = <&sys_ctrl PERIPH_RSTDIS0_MMC0>;
                        bus-width = <0x8>;
+                      runtime-suspend;
                        vmmc-supply = <&ldo19>;
                        pinctrl-names = "default";
                        pinctrl-0 = <&emmc_pmx_func &emmc_clk_cfg_func

修改DeviceTree解析文件,增長MMC_CAP_RUNTIME_RESUME。

index 094202c..35fd7b5
--- a/drivers/mmc/host/dw_mmc.c
+++ b/drivers/mmc/host/dw_mmc.c
@@ -2922,6 +2922,10 @@ static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
                dev_info(dev, "supports-highspeed property is deprecated.\n");
                pdata->caps |= MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED;
        }
+       if (of_find_property(np, "runtime-suspend", NULL)) {
+               dev_info(dev, "supports-highspeed property is deprecated.\n");
+               pdata->caps |=  MMC_CAP_RUNTIME_RESUME;
+       }
 
        return pdata;
}

修改後mmc0:0001的resume達到了預期,mmc_resume沒有被執行。

針對統計結果,效果明顯。

image

雖然沒有在系統resume過程當中執行,可是mmc0:0001總要resume。只不過稍微延遲了,再也不這個工具統計之中。

延後執行的mmc0:0001的resume耗費了72.317ms,也和以前的差很少。實際上沒有對整個流程做出實質貢獻,只是不在統計數據以內。

[32m[   32.486851] [0m[33mmmc_host mmc0[0m: Bus speed (slot 0) = 24800000Hz (slot req 400000Hz, actual 400000HZ div = 31 caps=40138143 caps2=0)
[32m[   32.500871] [0m[33mueventd[0m: fixup /sys/devices/system/cpu/cpu4/cpufreq/scaling_max_freq 1000 1000 664
[32m[   32.501305] [0m[33mueventd[0m: fixup /sys/devices/system/cpu/cpu4/cpufreq/scaling_min_freq 1000 1000 664
[32m[   32.540313] [0m[33mueventd[0m: fixup /sys/devices/system/cpu/cpu5/cpufreq/scaling_max_freq 1000 1000 664
[32m[   32.540747] [0m[33mueventd[0m: fixup /sys/devices/system/cpu/cpu5/cpufreq/scaling_min_freq 1000 1000 664
[32m[   32.559168] [0m[33mmmc_host mmc0[0m: Bus speed (slot 0) = 51756522Hz (slot req 52000000Hz, actual 51756522HZ div = 0 caps=40138143 caps2=0)

mmc2:0001

mmc2:0001和mmc0:0001的區別在於不一樣的mmc_bus_ops,mmc2:0001是SDIO接口,對應的應該是mmc_sdio_ops。

4013.876306 |   4)    sh-4511     |               |  /* device_pm_callback_start: mmc mmc2:0001, parent: mmc2, [suspend] */
4013.876360 |   4)    sh-4511     |               |  /* device_pm_callback_end: mmc mmc2:0001, err=0 */
4013.876397 |   4)    sh-4511     |               |  /* device_pm_callback_start: sdio mmc2:0001:1, parent: mmc2:0001, [suspend] */
4013.876437 |   4)    sh-4511     |               |  /* device_pm_callback_end: sdio mmc2:0001:1, err=0 */
4013.876470 |   4)    sh-4511     |               |  /* device_pm_callback_start: wl1271_sdio mmc2:0001:2, parent: mmc2:0001, [suspend] */
4013.876525 |   4)    sh-4511     |               |  /* device_pm_callback_end: wl1271_sdio mmc2:0001:2, err=0 */
4013.876556 |   4)    sh-4511     |               |  /* device_pm_callback_start: wl18xx_driver wl18xx.1.auto, parent: mmc2:0001:2, [suspend] */
4013.876596 |   4)    sh-4511     |               |  /* device_pm_callback_end: wl18xx_driver wl18xx.1.auto, err=0 */
4013.881676 |   4)    sh-4511     |               |  /* device_pm_callback_start: wl18xx_driver wl18xx.1.auto, parent: mmc2:0001:2, bus [suspend] */
4013.881698 |   4)    sh-4511     |               |  /* device_pm_callback_end: wl18xx_driver wl18xx.1.auto, err=0 */
4013.881740 |   4)    sh-4511     |               |  /* device_pm_callback_start: wl1271_sdio mmc2:0001:2, parent: mmc2:0001, bus [suspend] */
4013.881765 |   4)    sh-4511     |               |  /* device_pm_callback_end: wl1271_sdio mmc2:0001:2, err=0 */
4013.882582 |   4)    sh-4511     |               |  /* device_pm_callback_start: sdio mmc2:0001:1, parent: mmc2:0001, bus [suspend] */
4013.882603 |   4)    sh-4511     |               |  /* device_pm_callback_end: sdio mmc2:0001:1, err=0 */
4013.882645 |   4)    sh-4511     |               |  /* device_pm_callback_start: mmc mmc2:0001, parent: mmc2, bus [suspend] */
4013.885524 |   4)    sh-4511     |               |  /* device_pm_callback_end: mmc mmc2:0001, err=0 */
4022.888667 |   0)    sh-4511     |               |  /* device_pm_callback_start: mmc mmc2:0001, parent: mmc2, bus [resume] */
4023.042980 |   0)    sh-4511     |               |  /* device_pm_callback_end: mmc mmc2:0001, err=0 */
4023.043021 |   0)    sh-4511     |               |  /* device_pm_callback_start: sdio mmc2:0001:1, parent: mmc2:0001, bus [resume] */
4023.043037 |   0)    sh-4511     |               |  /* device_pm_callback_end: sdio mmc2:0001:1, err=0 */
4023.043067 |   0)    sh-4511     |               |  /* device_pm_callback_start: wl1271_sdio mmc2:0001:2, parent: mmc2:0001, bus [resume] */
4023.043089 |   0)    sh-4511     |               |  /* device_pm_callback_end: wl1271_sdio mmc2:0001:2, err=0 */
4023.043128 |   0)    sh-4511     |               |  /* device_pm_callback_start: wl18xx_driver wl18xx.1.auto, parent: mmc2:0001:2, bus [resume] */
4023.043151 |   0)    sh-4511     |               |  /* device_pm_callback_end: wl18xx_driver wl18xx.1.auto, err=0 */
4023.048824 |   0)    sh-4511     |               |  /* device_pm_callback_start: wl18xx_driver wl18xx.1.auto, parent: mmc2:0001:2, [resume] */
4023.048877 |   0)    sh-4511     |               |  /* device_pm_callback_end: wl18xx_driver wl18xx.1.auto, err=0 */
4023.048916 |   0)    sh-4511     |               |  /* device_pm_callback_start: wl1271_sdio mmc2:0001:2, parent: mmc2:0001, [resume] */
4023.048979 |   0)    sh-4511     |               |  /* device_pm_callback_end: wl1271_sdio mmc2:0001:2, err=0 */
4023.049011 |   0)    sh-4511     |               |  /* device_pm_callback_start: sdio mmc2:0001:1, parent: mmc2:0001, [resume] */
4023.049074 |   0)    sh-4511     |               |  /* device_pm_callback_end: sdio mmc2:0001:1, err=0 */
4023.049113 |   0)    sh-4511     |               |  /* device_pm_callback_start: mmc mmc2:0001, parent: mmc2, [resume] */
4023.049165 |   0)    sh-4511     |               |  /* device_pm_callback_end: mmc mmc2:0001, err=0 */

由下可知不一樣部分在於mmc_host的suspend/resume,pm_generic_suspend/pm_generic_resume基本上耗費的時間都不多。

因此重點看看mmc_sdio_suspend和mmc_sdio_resume兩個函數。

/*              */    mmc_bus_suspend() {
/*   0.833 us   */      pm_generic_suspend();
/*              */      mmc_sdio_suspend() {
/* # 2854.687 us*/      }
/* # 2864.115 us*/    }

 

/*              */    mmc_bus_resume() {
/*              */      mmc_sdio_resume() {
/* @ 154277.3 us*/      }
/*   1.563 us   */      pm_generic_resume();
/* @ 154290.3 us*/    }

mmc_sdio_suspend

時間很短,不關注。

mmc_sdio_resume

mmc2:001的mmc_bus_resume時間達到154.313,mmc_sdio_resume包含三個msleep共75331.82+15953.43+14369.58=105654.83us=105.654ms。

考慮:是否能夠將SDIO的resume也像MMC那樣延後執行呢?

7.3 CPU_OFF/CPU_ON

在分析了resome_console和mmc以後,再來看一下CPU_OFF/CPU_ON的執行過程。

在disable_nonboot_cpus中選取first_cpu,除此以外的全部for_each_online_cpu都會被_cpu_down,而且將其放到frozen_cpus上。

在enable_nonboot_cpus中,遍歷frozen_cpus,將其_cpu_up。

針對HiKey,真個流程就是對CPU 1-7進行關閉、打開的操做,因此重點分析一下_cpu_down和_cpu_up。

耗時最大的三個地方都用粗體下劃線標出,除了發送狀態通知以外,還有rcu sync處理。

對cpu_chain上全部註冊notifier,逐個執行回調函數notifier_call,根據action進行處理,這是一個很耗時的過程。

/* Requires cpu_add_remove_lock to be held */
static int _cpu_down(unsigned int cpu, int tasks_frozen)
{
    int err, nr_calls = 0;
    void *hcpu = (void *)(long)cpu;
    unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
    struct take_cpu_down_param tcd_param = {
        .mod = mod,
        .hcpu = hcpu,
    };

    if (num_online_cpus() == 1)  若是online只有一個CPU,則沒法再進行down操做。
        return -EBUSY;

    if (!cpu_online(cpu))  若是當前CPU沒有online,則無需進行down。
        return -EINVAL;

    cpu_hotplug_begin();  取得cpu_hotplug.lock鎖

    err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);  在cpu_chain上發從CPU_DOWN_PREPARE狀態。
    if (err) {
        nr_calls--;
        __cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
        pr_warn("%s: attempt to take down CPU %u failed\n",
            __func__, cpu);
        goto out_release;
    }

    /*
     * By now we've cleared cpu_active_mask, wait for all preempt-disabled
     * and RCU users of this state to go away such that all new such users
     * will observe it.
     *
     * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
     * not imply sync_sched(), so wait for both.
     *
     * Do sync before park smpboot threads to take care the rcu boost case.
     */
    if (IS_ENABLED(CONFIG_PREEMPT))
        synchronize_rcu_mult(call_rcu, call_rcu_sched);
    else
        synchronize_rcu();

    smpboot_park_threads(cpu);  將此CPU的由kthread_create建立的線程設置爲PARKED。

    /*
     * Prevent irq alloc/free while the dying cpu reorganizes the
     * interrupt affinities.
     */
    irq_lock_sparse();

    /*
     * So now all preempt/rcu users must observe !cpu_active().
     */
    err = stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
    if (err) {
        /* CPU didn't die: tell everyone.  Can't complain. */
        cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
        irq_unlock_sparse();
        goto out_release;
    }
    BUG_ON(cpu_online(cpu));  若是指定的CPU還處於online狀態,則觸發kernel panic。

    /*
     * The migration_call() CPU_DYING callback will have removed all
     * runnable tasks from the cpu, there's only the idle task left now
     * that the migration thread is done doing the stop_machine thing.
     *
     * Wait for the stop thread to go away.
     */
    while (!per_cpu(cpu_dead_idle, cpu))
        cpu_relax();
    smp_mb(); /* Read from cpu_dead_idle before __cpu_die(). */
    per_cpu(cpu_dead_idle, cpu) = false;

    /* Interrupts are moved away from the dying cpu, reenable alloc/free */
    irq_unlock_sparse();

    hotplug_cpu__broadcast_tick_pull(cpu);
    /* This actually kills the CPU. */
    __cpu_die(cpu);  調用底層架構相關的cpu_kill回調函數。

    /* CPU is completely dead: tell everyone.  Too late to complain. */
    tick_cleanup_dead_cpu(cpu);
    cpu_notify_nofail(CPU_DEAD | mod, hcpu);  通知完成offline動做的處理器狀態爲CPU_DEAD。

    check_for_tasks(cpu);

out_release:
    cpu_hotplug_done();  釋放cpu_hotplug.lock鎖。
    trace_sched_cpu_hotplug(cpu, err, 0);
    if (!err)
        cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
    return err;
}

 

 

/* Requires cpu_add_remove_lock to be held */
static int _cpu_up(unsigned int cpu, int tasks_frozen)
{
    int ret, nr_calls = 0;
    void *hcpu = (void *)(long)cpu;
    unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
    struct task_struct *idle;

    cpu_hotplug_begin();  若是沒有其餘進程佔有,則退出,執行後面的工做;若是被佔用,則設置這個進程爲TASK_INTERRUPTIBLE,等待結束。

    if (cpu_online(cpu) || !cpu_present(cpu)) {  若是該CPU已經online,則沒有必要執行up;或者非present,則沒法up。
        ret = -EINVAL;
        goto out;
    }

    idle = idle_thread_get(cpu);  給指定CPU生成一個idle線程
    if (IS_ERR(idle)) {
        ret = PTR_ERR(idle);
        goto out;
    }

    ret = smpboot_create_threads(cpu);  建立一個用於管理CPU hotplug動做的線程
    if (ret)
        goto out;

    ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);  通知cpu_chain中的處理器,當前正在online的CPU狀態爲CPU_UP_PREPARE。
    if (ret) {
        nr_calls--;
        pr_warn("%s: attempt to bring up CPU %u failed\n",
            __func__, cpu);
        goto out_notify;
    }

    /* Arch-specific enabling code. */
    ret = __cpu_up(cpu, idle);  調用更底層的使能CPU操做。

    if (ret != 0)
        goto out_notify;
    BUG_ON(!cpu_online(cpu));

    /* Now call notifier in preparation. */
    cpu_notify(CPU_ONLINE | mod, hcpu);  通知cpu_chanin中的處理器,目前online動做的處理器的狀態爲CPU_ONLINE。

out_notify:
    if (ret != 0)
        __cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
out:
    cpu_hotplug_done();  釋放cpu_hotplug.lock鎖。
    trace_sched_cpu_hotplug(cpu, ret, 1);

    return ret;
}

 

RCU synchronize

RCU即Read-Copy Update,是Linux內核比較成熟的新型讀寫鎖,具備較高的讀寫併發性能,經常用在須要互斥的關鍵性能路徑。

在Kernel中,有兩種類型實現tiny和tree,tiny rcu更簡潔,經常使用在小型嵌入式系統中;tree rcu被普遍用在了server、desktop、android中。

RCU的和心理鏈式讀者訪問的同時,寫者能夠更新訪問對象的副本,但寫者須要等待全部讀者完成訪問以後,才能刪除老對象。這個過程實現的關鍵和難點在於如何判斷全部的讀者已經完成訪問。一般把寫者開始更新,到全部讀者完成訪問這段時間叫作寬限期(Grace Period)。內核中實現寬限期等待的函數是synchronize_rcu。

synchronize_rcu_mult同時在call_rcu()函數列表的寬限期上等待,知道全部的都結束。

總結:cpu_chain和rcu sync耗時大部是由外界因素決定的,若是cpu_chain或者call_rcu()列表不少,或者裏面回調函數特別耗時,都會拉長CPU_OFF/CPU_ON時間。這部分的優化特別離散。

參考文檔:

RCU synchronize原理分析 http://www.wowotech.net/kernel_synchronization/223.html

synchronize_rcu()函數詳解 http://blog.chinaunix.net/uid-20648784-id-1592811.html

如何肯定一個函數耗費時間?

在函數中添加如下ftrace,能夠獲得執行時的timestamp,進程名稱,函數名和對應的行數。

trace_suspend_resume(TPS(__func__), __LINE__, true);

 

結果以下:

223.502950 |   1)    sh-2832     |               |                  /* suspend_resume: CPU_ON[4] begin */
223.502953 |   1)    sh-2832     |               |                  /* suspend_resume: _cpu_up[513] begin */
223.502957 |   1)    sh-2832     |               |                  /* suspend_resume: _cpu_up[516] begin */
223.502959 |   1)    sh-2832     |               |                  /* suspend_resume: _cpu_up[522] begin */
223.502969 |   1)    sh-2832     |               |                  /* suspend_resume: _cpu_up[529] begin */
223.502973 |   1)    sh-2832     |               |                  /* suspend_resume: _cpu_up[534] begin */
223.529988 |   1)    sh-2832     |               |                  /* suspend_resume: _cpu_up[544] begin */
223.530382 |   1)    sh-2832     |               |                  /* suspend_resume: _cpu_up[552] begin */
223.531451 |   1)    sh-2832     |               |                  /* suspend_resume: _cpu_up[559] begin */
223.531454 |   1)    sh-2832     |               |                  /* suspend_resume: _cpu_up[563] begin */
223.531456 |   1)    sh-2832     |               |                  /* suspend_resume: CPU_ON[4] end */

在Excel中打開,能夠輕鬆算出時間差。可知Line 534到Line 544以前耗費了最多時間。

image

詳情請參考:

cpu hotplug的流程 http://blog.csdn.net/u013686805/article/details/46942469

Linux CPU core的電源管理(5)_cpu control及cpu hotplug http://www.wowotech.net/pm_subsystem/cpu_hotplug.html

8 參考文檔

Power Management Support in Hikey (suspend-resume):http://www.96boards.org/forums/topic/power-management-support-in-hikey-suspend-resume/#gsc.tab=0

Suspend to Idle:http://www.linaro.org/blog/suspend-to-idle/

Suspend and Resume:https://01.org/zh/suspendresume

SuspendAndResume github:https://github.com/arnoldlu/suspendresume

Linux電源管理(6)_Generic PM之Suspend功能:http://www.wowotech.net/pm_subsystem/suspend_and_resume.html

相關文章
相關標籤/搜索