logistics二分類

binaryclassification

#DATASET: https://archive.ics.uci.edu/ml/datasets/Glass+Identification
import
numpy as np import matplotlib.pyplot as plt import pandas as pd import sklearn import sklearn.preprocessing as pre
df=pd.read_csv('data\glassi\glass.data')
df.head()
  id RI Na Mg Al Si K Ca Ba Fe class
0 1 1.52101 13.64 4.49 1.10 71.78 0.06 8.75 0.0 0.0 1
1 2 1.51761 13.89 3.60 1.36 72.73 0.48 7.83 0.0 0.0 1
2 3 1.51618 13.53 3.55 1.54 72.99 0.39 7.78 0.0 0.0 1
3 4 1.51766 13.21 3.69 1.29 72.61 0.57 8.22 0.0 0.0 1
4 5 1.51742 13.27 3.62 1.24 73.08 0.55 8.07 0.0 0.0 1
X,y=df.iloc[:,1:-1],df.iloc[:,-1]
X,y=np.array(X),np.array(y)

#change the value the elementdom

for idx,class_name in enumerate(sorted(list(set(y)))):
y[y==class_name]=idxspa

y
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
       4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
       5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], dtype=int64)
#make the matrix's elements 2 value
#if element doesn't equals to 1 then make it 0
#'1' stands for the '2' class

for i in range(len(y)):
    if y[i]!=1:
        y[i]=0
#split our training dataset randomly

from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.15,random_state=44)
X_train.shape,y_train.shape,X_test.shape,y_test.shape
((181, 9), (181,), (33, 9), (33,))
f_mean=np.mean(X_train,axis=0)
f_std=np.std(X_train,axis=0)
f_mean,f_std
(array([1.51832884e+00, 1.33736464e+01, 2.69287293e+00, 1.46425414e+00,
        7.26391160e+01, 5.17016575e-01, 8.95314917e+00, 1.71104972e-01,
        6.02762431e-02]),
 array([0.00300427, 0.79769555, 1.42353328, 0.49169919, 0.77056863,
        0.69105168, 1.42892902, 0.5002639 , 0.10131419]))
#standardize training set

X_train=(X_train-f_mean)/f_std
X_test=(X_test-f_mean)/f_std

theta = np.zeros((X_train.shape[1] + 1))
theta.shape
(10,)
#add constant parameter

X_train = np.concatenate((np.ones((X_train.shape[0], 1)), X_train), axis=1)
X_test = np.concatenate((np.ones((X_test.shape[0], 1)), X_test), axis=1)
X_train.shape,X_test.shape,theta.shape
((181, 10), (33, 10), (10,))
#initialize the parameter

np.random.seed(42)
theta = np.random.rand(*theta.shape)
theta
array([0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864,
       0.15599452, 0.05808361, 0.86617615, 0.60111501, 0.70807258])
#cross_entropy_loss: loss function
#h: hypothesis function
#gradient: gradient function

num_epoch=500000
for epoch in range(num_epoch):
    logist = np.dot(X_train, theta)
    h = 1 / (1 + np.exp(-logist))
    cross_entropy_loss = (-y_train * np.log(h) - (1 - y_train) * np.log(1 - h)).mean()
    gradient = np.dot((h - y_train), X_train) / y_train.size
    theta = theta -  0.01*gradient
    if epoch%100000==0:
        print('Epoch={}\tLoss={}'.format(epoch,cross_entropy_loss))
Epoch=0	Loss=0.9770836920534414
Epoch=100000	Loss=0.5884129057196792
Epoch=200000	Loss=0.5828823869347305
Epoch=300000	Loss=0.5798937167992417
Epoch=400000	Loss=0.5782071252958373
h_test = 1 / (1 + np.exp(-np.dot(X_test, theta)))

#accurancy
((h_test > 0.5) == y_test).sum() / y_test.size
0.8484848484848485
相關文章
相關標籤/搜索