題目以下數組
每一回合,從中選出任意兩塊石頭,而後將它們一塊兒粉碎。假設石頭的重量分別爲 x 和 y,且 x <= y。那麼粉碎的可能結果以下:
若是 x == y,那麼兩塊石頭都會被徹底粉碎;
若是 x != y,那麼重量爲 x 的石頭將會徹底粉碎,而重量爲 y 的石頭新重量爲 y-x。
最後,最多隻會剩下一塊 石頭。返回此石頭 最小的可能重量 。若是沒有石頭剩下,就返回 0。
示例 1:
輸入:stones = [2,7,4,1,8,1]
輸出:1
解釋:
組合 2 和 4,獲得 2,因此數組轉化爲 [2,7,1,8,1],
組合 7 和 8,獲得 1,因此數組轉化爲 [2,1,1,1],
組合 2 和 1,獲得 1,因此數組轉化爲 [1,1,1],
組合 1 和 1,獲得 0,因此數組轉化爲 [1],這就是最優值。
示例 2:
輸入:stones = [31,26,33,21,40]
[7,2,21]
[19,7,31]
[12,7]
[5]
[2,26,21,40]
[3,5,40]
[2,40]
輸出:5
示例 3:
輸入:stones = [1,2]
輸出:1
來源:力扣(LeetCode)
連接:https://leetcode-cn.com/problems/last-stone-weight-ii
著做權歸領釦網絡全部。商業轉載請聯繫官方受權,非商業轉載請註明出處。
複製代碼
答題思路以下,用到動態規劃, 能夠把數個石頭一塊兒當作一塊大石頭,將小石頭分爲兩組變成兩顆大石頭互撞的問題,所以就只須要計算其中一組的重量怎麼分得趨近於平均值(這樣對撞纔會獲得最小值),也就是全部石頭重量和的一半,接着就是容量限制總和/2之內的揹包問題了markdown
* ClassName: LeetCodeTest10 <br/>
* Description: <br/>
* date: 2021/6/9 10:11<br/>
*
* @author me<br/>
* @since JDK 1.8
*/
public class LeetCodeTest10 {
/**
*
,須要爲數組中每個數字加上符號(或正或負),統計計算結果等於target的方案。
本題須要求得數組中,同理也須要爲每一個數字加上符號(或正或負),再計算這個計算表達式的結果,指望獲得的絕對值最小。 問題能夠轉化爲咱們但願494題中的target值,要最小。
通過昨天的分析,只考慮負數的和,假設爲neg,那麼正數和 + 負數和 = 總和 = target 表達式轉化爲 (sum - neg) + (-neg) = target <=> sum - 2 * neg = target 指望獲得的絕對值最小,極限就是target = 0 <=> neg = sum / 2,那麼本題因爲neg的值未知,問題最終轉化爲揹包問題,從 stones 數組中選擇,湊成總和不超過sum/2 的最大價值。
能夠把數個石頭一塊兒當作一塊大石頭,將小石頭分爲兩組變成兩顆大石頭互撞的問題,所以就只須要計算其中一組的重量怎麼分得趨近於平均值(這樣對撞纔會獲得最小值),也就是全部石頭重量和的一半,接着就是容量限制總和/2之內的揹包問題了
*/
public static void main(String[] args) {
int stones[] = {31,26,33,21,40};
int backNum = new Solution().lastStoneWeightII(stones);
System.out.println(backNum);
}
static class Solution {
public int lastStoneWeightII(int[] stones) {
int sum = 0;
for (int stone : stones) {
sum += stone;
}
int val = sum / 2; //接近平均值
int[] dp = new int[val + 1];
//遍歷數組
for (int stone : stones) {
//平均值中間來嗎
for (int i = val; i >= 0; i--) {
if (stone <= i) {
dp[i] = Math.max(dp[i], dp[i - stone] + stone);
}
}
}
//73 146-75 151
return sum - dp[val] * 2;
}
}
}
複製代碼