JavaShuo
欄目
標籤
Coarse pruning of convolutional neural networks with random masks
時間 2020-12-27
原文
原文鏈接
這是ICLR 2017的一篇文章,文章認爲既然我們無法直觀得去衡量weights,layers,kernels的重要性,那我們就用random的方式。對於N個要剪枝的對象,我們可以有2^N種組合。在給定裁剪率 α 的情況下,就有 α*2^N種組合。從這些組合中挑選在驗證集上精度最大的作爲局部最優剪枝。文章建議的N=50,α=40%。 單純從效果上來講,還不錯: 討論 但是,讀者從自己做裁剪工作的角
>>阅读原文<<
相關文章
1.
Convolutional Neural Networks---Foundations of Convolutional Neural Networks
2.
Bag of Tricks for Image Classification with Convolutional Neural Networks
3.
Bag of Tricks for Convolutional Neural Networks
4.
Pruning Convolutional Neural Networks For Resource Efficient Inference
5.
Pruning convolutional neural networks for resource efficent inference
6.
Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning
7.
IMAGE DENOISING WITH GRAPH-CONVOLUTIONAL NEURAL NETWORKS
8.
Convolutional Neural Networks: Application
9.
ImageNet Classification with Deep Convolutional Neural Networks
10.
Convolutional Neural Networks with Alternately Updated Clique
更多相關文章...
•
XSLT
元素
-
XSLT 教程
•
XSLT
元素
-
XSLT 教程
•
爲了進字節跳動,我精選了29道Java經典算法題,帶詳細講解
•
RxJava操作符(一)Creating Observables
相關標籤/搜索
networks
coarse
masks
pruning
convolutional
neural
random
for...of
for..of
with+this
Spring教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
gitlab新建分支後,android studio拿不到
2.
Android Wi-Fi 連接/斷開時間
3.
今日頭條面試題+答案,花點時間看看!
4.
小程序時間組件的開發
5.
小程序學習系列一
6.
[微信小程序] 微信小程序學習(一)——起步
7.
硬件
8.
C3盒模型以及他出現的必要性和圓角邊框/前端三
9.
DELL戴爾筆記本關閉觸摸板觸控板WIN10
10.
Java的long和double類型的賦值操作爲什麼不是原子性的?
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Convolutional Neural Networks---Foundations of Convolutional Neural Networks
2.
Bag of Tricks for Image Classification with Convolutional Neural Networks
3.
Bag of Tricks for Convolutional Neural Networks
4.
Pruning Convolutional Neural Networks For Resource Efficient Inference
5.
Pruning convolutional neural networks for resource efficent inference
6.
Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning
7.
IMAGE DENOISING WITH GRAPH-CONVOLUTIONAL NEURAL NETWORKS
8.
Convolutional Neural Networks: Application
9.
ImageNet Classification with Deep Convolutional Neural Networks
10.
Convolutional Neural Networks with Alternately Updated Clique
>>更多相關文章<<