# f(n)爲翻徹底書的方法 # 遞歸寫法 def f(n): if n == 1: return 1 if n == 2: return 2 if n > 2: return f(n - 1) + f(n - 2) # 迭代寫法,或者叫循環寫法 def f(n): res = [0 for i in range(n + 1)] res[1] = 1 res[2] = 2 for i in range(3, n+1): res[i] = res[i - 1] + res[i - 2] return res[n] # 使用緩存 cache = {} def fib(n): if n not in cache.keys(): cache[n] = _fib(n) return cache[n] def _fib(n): if n == 1 or n == 2: return n else: return fib(n-1) + fib(n-2)
def LinearSearch(array, t): for i in range(len(array)): if array[i] == t: return True return False def BinarySearch(array, t): left = 0 right = len(array) - 1 while left <= right: mid = int((left + right) / 2) if array[mid] < t: left = mid + 1 elif array[mid] > t: right = mid - 1 else: return True return False array = list(range(100000000)) import time t1 = time.time() LinearSearch(array, 100000001) t2 = time.time() print('線性查找:', t2 - t1) t3 = time.time() BinarySearch(array, 100000001) t4 = time.time() print('二分查找:', t4 - t3)
[ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ] 查找好比16在不在矩陣中。
class Solution: # @param matrix, a list of lists of integers # @param target, an integer # @return a boolean def searchMatrix(self, matrix, target): i = 0 j = len(matrix[0]) - 1 while i < len(matrix) and j >= 0: if matrix[i][j] == target: return True elif matrix[i][j] > target: j -= 1 else: i += 1 return False
鏈表中最簡單的一種是單向鏈表,它包含兩個域,一個信息域和一個指針域。這個連接指向列表中的下一個節點,而最後一個節點則指向一個空值。python
# 鏈表中的節點的數據結構 class ListNode(object): def __init__(self, x): self.val = x self.next = None # 實例化 A = ListNode('a') B = ListNode('b') C = ListNode('c') A.next = B B.next = C # 這樣,一條鏈表就造成了。 # 'a' -> 'b' -> 'c' # 遍歷鏈表 tmp = A while tmp != None: print(tmp.val) tmp = tmp.next # 遞歸遍歷鏈表 def listorder(head): if head: print(head.val) listorder(head.next) listorder(A)
翻轉一條單向鏈表。數組
例子:緩存
Input: 1->2->3->4->5->NULL Output: 5->4->3->2->1->NULL
解答:數據結構
# Definition for singly-linked list. class ListNode(object): def __init__(self, x): self.val = x self.next = None class Solution(object): def reverseList(self, head): """ :type head: ListNode :rtype: ListNode """ dummy = head tmp = dummy while head and head.next != None: dummy = head.next head.next = dummy.next dummy.next = tmp tmp = dummy return dummy head = ListNode(1) head.next = ListNode(2) head.next.next = ListNode(3) head.next.next.next = ListNode(4) head.next.next.next.next = ListNode(5) solution = Solution() reverse_head = solution.reverseList(head) tmp = reverse_head while tmp: print(tmp.val) tmp = tmp.next
class TreeNode(object): def __init__(self, x): self.val = x self.left = None self.right = None root = TreeNode(1) root.left = TreeNode(2) root.right = TreeNode(3) ''' 1 / \ 2 3 ''' # root就是一顆二叉樹
# class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None def inorder(root): if root: inorder(root.left) print(root.val) inorder(root.right)
class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None def preorder(root): if root: print(root.val) preorder(root.left) preorder(root.right) root = TreeNode(1) root.left = TreeNode(2) root.right = TreeNode(3) preorder(root)
# class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None def postorder(root): if root: postorder(root.left) postorder(root.right) print(root.val)
class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None def preorder(root): if root: print(root.val) preorder(root.left) preorder(root.right) def inorder(root): if root: inorder(root.left) print(root.val) inorder(root.right) def postorder(root): if root: postorder(root.left) postorder(root.right) print(root.val) root = TreeNode(1) root.left = TreeNode(2) root.right = TreeNode(3) root.left.left = TreeNode(4) root.left.right = TreeNode(5) root.right.left = TreeNode(6) root.right.right = TreeNode(7) preorder(root) inorder(root) postorder(root)
A / \ B E / \ C F \ / D G 先序遍歷: ABCDEFG 中序遍歷: CDBAEGF 後序遍歷: DCBGFEA
使用程序根據二叉樹的先序遍歷和中序遍從來恢復二叉樹。app
class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None def buildTree(preorder, inorder): if len(preorder) == 0: return None if len(preorder) == 1: return TreeNode(preorder[0]) root = TreeNode(preorder[0]) index = inorder.index(root.val) root.left = buildTree(preorder[1 : index + 1], inorder[0 : index]) root.right = buildTree(preorder[index + 1 : len(preorder)], inorder[index + 1 : len(inorder)]) return root preorder_string = 'ABCDEFG' inorder_string = 'CDBAEGF' r = buildTree(preorder_string, inorder_string) preorder(r) inorder(r) postorder(r)
python實現post
class Stack(object): def __init__(self): self.stack = [] def pop(self): if self.is_empty(): return None else: return self.stack.pop() def push(self,val): return self.stack.append(val) def peak(self): if self.is_empty(): return None else: return self.stack[-1] def size(self): return len(self.stack) def is_empty(self): return self.size() == 0 s = Stack() s.push(1) s.peak() s.is_empty() s.pop()
python實現測試
class Queue(object): def __init__(self): self.queue = [] def enqueue(self,val): self.queue.insert(0,val) def dequeue(self): if self.is_empty(): return None else: return self.queue.pop() def size(self): return len(self.queue) def is_empty(self): return self.size() == 0 q = Queue() q.enqueue(1) q.is_empty() q.dequeue()
class StackByQueue(object): def __init__(self): self.stack = Queue() def push(self, val): self.stack.enqueue(val) def pop(self): for i in range(self.stack.size() - 1): value = self.stack.dequeue() self.stack.enqueue(value) return self.stack.dequeue()
class QueueByStack(object): def __init__(self): self.queue1 = Stack() self.queue2 = Stack() def enqueue(self, val): self.queue1.push(val) def dequeue(self): for i in range(self.queue1.size() - 1): value = self.queue1.pop() self.queue2.push(value) res = self.queue1.pop() for i in range(self.queue2.size()): value = self.queue2.pop() self.queue1.push(value) return res
def insertSort(A): for j in range(1, len(A)): key = A[j] i = j - 1 while i >= 0 and A[i] > key: A[i + 1] = A[i] i = i - 1 A[i + 1] = key return A A = [5, 2, 4, 6, 1, 3] print(insertSort(A))
function insertSort(A) { for (j = 1; j < A.length; j++) { var key = A[j]; var i = j - 1; while (i >= 0 && A[i] > key) { A[i + 1] = A[i]; i = i - 1; } A[i + 1] = key; } return A; } var A = [5, 2, 4, 6, 1, 3]; console.log(insertSort(A));
def partition(A, p, r): x = A[r] i = p - 1 for j in range(p, r): if A[j] <= x: i = i + 1 A[i], A[j] = A[j], A[i] A[i + 1], A[r] = A[r], A[i + 1] return i + 1 def quickSort(A, p, r): if p < r: q = partition(A, p, r) quickSort(A, p, q - 1) quickSort(A, q + 1, r) A = [2, 8, 7, 1, 3, 5, 6, 4] quickSort(A, 0, 7) print(A)
假設快速排序的時間複雜度爲f(N) f(N) = 2 * f(N / 2) + O(N) f(N) = 2 * (2 * f(N / 4) + O(N/2)) + O(N) ... f(1) = O(1) 因此f(N) = O(NlogN)
def partition(A, p, r): x = A[r] i = p - 1 for j in range(p, r): if A[j] >= x: i = i + 1 A[i], A[j] = A[j], A[i] A[i + 1], A[r] = A[r], A[i + 1] return i + 1 def findKthLargest(A, p, r, k): if p <= r: q = partition(A, p, r) if k - 1 == q: return A[q] elif k - 1 < q: return findKthLargest(A, p, q - 1, k) else: return findKthLargest(A, q + 1, r, k) A = [2, 8, 7, 1, 3, 5, 6, 4] ret = findKthLargest(A, 0, 7, 8) print('ret: ', ret)