Linux 虛擬地址空間

背景

 今天學習Linux 內存相關的知識時,看到了虛擬地址相關的內容,故記錄一下跟虛擬地址空間,堆和棧相關的知識.因爲所看的文章中,內核版本較老,故僅僅記錄一下,有關新版本內核的知識待後續學習中再進行整理.html

Linux虛擬地址空間

在IA-32下,虛擬地址空間一般是一個4GB的地址塊,一般按3:1劃分爲用戶空間和內核空間.3:1不是惟一的選項,因爲邊界定義在源碼中定義爲常數,故選擇一種其餘的劃分方式基本上沒啥工做量,在某些場合,最好按對稱劃分(1:1).能夠經過__page_offset進行定義.
但這並不意味着內核只有這麼多物理內存可用,僅表示他可支配這部分的地址空間,根據須要將其映射到物理內存.程序員

虛擬內存段映射

虛擬地址經過也表映射到物理內存,由操做系統維護.
內核空間在頁表有較高的特權級別,用戶態程序訪問這些頁時,會致使頁錯誤(Page fault)
內核空間是持續存在的,並在全部進程中,均可以映射到一樣的物理內存.
內核代碼和數據老是可尋址,與此相反,用戶模式的地址空間映射隨着進程的切換不斷變化.數組

image.png

用戶進程段

用戶進程分段以下緩存

名稱 存儲內容
局部變量,函數參數,返回地址等
動態分配的內存[ brk() ]
BSS段 未初始化或初始值爲0的全局變量和靜態局部變量
數據段 已初始化且初值非0的全局變量和靜態局部變量
代碼段 可執行代碼,字符串字面值,只讀變量

堆由程序員本身管理,顯示申請和釋放;
bss段,數據段和代碼段是可執行程序編譯時的分段
堆和棧是運行時的分段數據結構

分段詳細解釋

內核空間

  內核老是駐留在內存中,是操做系統的一部分,不容許應用程序讀寫該區域,或直接調用內核代碼定義的函數.架構

棧(Stack)

   棧又稱堆棧,由編譯器自動分配釋放,行爲相似數據結構中的棧(先進後出)。堆棧主要有三個用途:app

1, 爲函數內部聲明的非靜態局部變量(C語言中稱「自動變量」)提供存儲空間。
2,  記錄函數調用過程相關的維護性信息,稱爲棧幀(Stack Frame)或過程活動記錄(Procedure Activation Record)。它包括函數返回地址,不適合裝入寄存器的函數參數及一些寄存器值的保存。除遞歸調用外,堆棧並不是必需。由於編譯時可獲知局部變量,參數和返回地址所需空間,並將其分配於BSS段。
3,  臨時存儲區,用於暫存長算術表達式部分計算結果或alloca()函數分配的棧內內存。函數

  持續地重用棧空間有助於使活躍的棧內存保持在CPU緩存中,從而加速訪問。進程中的每一個線程都有屬於本身的棧。向棧中不斷壓入數據時,若超出其容量就會耗盡棧對應的內存區域,從而觸發一個頁錯誤。此時若棧的大小低於堆棧最大值RLIMIT_STACK(一般是8M),則棧會動態增加,程序繼續運行。映射的棧區擴展到所需大小後,再也不收縮。佈局

  Linux中ulimit -s命令可查看和設置堆棧最大值,當程序使用的堆棧超過該值時, 發生棧溢出(Stack Overflow),程序收到一個段錯誤(Segmentation Fault)。注意,調高堆棧容量可能會增長內存開銷和啓動時間。學習

堆棧既可向下增加(向內存低地址)也可向上增加, 這依賴於具體的實現。本文所述堆棧向下增加。

堆棧的大小在運行時由內核動態調整。

內存映射段(mmap)

內核將硬盤文件的內容直接映射到內存, 任何應用程序均可經過Linux的mmap()系統調用或Windows的CreateFileMapping()/MapViewOfFile()請求這種映射。內存映射是一種方便高效的文件I/O方式, 於是被用於裝載動態共享庫。
用戶也可建立匿名內存映射,該映射沒有對應的文件, 可用於存放程序數據。在 Linux中,若經過malloc()請求一大塊內存,C運行庫將建立一個匿名內存映射,而不使用堆內存。」大塊」 意味着比閾值 MMAP_THRESHOLD還大,缺省爲128KB,可經過mallopt()調整。

該區域用於映射可執行文件用到的動態連接庫。在Linux 2.4版本中,若可執行文件依賴共享庫,則系統會爲這些動態庫在從0x40000000開始的地址分配相應空間,並在程序裝載時將其載入到該空間。在Linux 2.6內核中,共享庫的起始地址被往上移動至更靠近棧區的位置。

從進程地址空間的佈局能夠看到,在有共享庫的狀況下,留給堆的可用空間還有兩處:一處是從.bss段到0x40000000,約不到1GB的空間;另外一處是從共享庫到棧之間的空間,約不到2GB。這兩塊空間大小取決於棧、共享庫的大小和數量。這樣來看,是否應用程序可申請的最大堆空間只有2GB?事實上,這與Linux內核版本有關。在上面給出的進程地址空間經典佈局圖中,共享庫的裝載地址爲0x40000000,這其實是Linux kernel 2.6版本以前的狀況了,在2.6版本里,共享庫的裝載地址已經被挪到靠近棧的位置,即位於0xBFxxxxxx附近,所以,此時的堆範圍就不會被共享庫分割成2個「碎片」,故kernel 2.6的32位Linux系統中,malloc申請的最大內存理論值在2.9GB左右。

堆(heap)

堆用於存放進程運行時動態分配的內存段,可動態擴張或縮減。堆中內容是匿名的,不能按名字直接訪問,只能經過指針間接訪問。當進程調用malloc(C)/new(C++)等函數分配內存時,新分配的內存動態添加到堆上(擴張);當調用free(C)/delete(C++)等函數釋放內存時,被釋放的內存從堆中剔除(縮減) 。

分配的堆內存是通過字節對齊的空間,以適合原子操做。堆管理器經過鏈表管理每一個申請的內存,因爲堆申請和釋放是無序的,最終會產生內存碎片。堆內存通常由應用程序分配釋放,回收的內存可供從新使用。若程序員不釋放,程序結束時操做系統可能會自動回收。

堆的末端由break指針標識,當堆管理器須要更多內存時,可經過系統調用brk()和sbrk()來移動break指針以擴張堆,通常由系統自動調用。

使用堆時常常出現兩種問題:1) 釋放或改寫仍在使用的內存(「內存破壞」);2)未釋放再也不使用的內存(「內存泄漏」)。當釋放次數少於申請次數時,可能已形成內存泄漏。泄漏的內存每每比忘記釋放的數據結構更大,由於所分配的內存一般會圓整爲下個大於申請數量的2的冪次(如申請212B,會圓整爲256B)。

注意,堆不一樣於數據結構中的」堆」,其行爲相似鏈表。

堆和棧的區別

①管理方式:棧由編譯器自動管理;堆由程序員控制,使用方便,但易產生內存泄露。

②生長方向:棧向低地址擴展(即」向下生長」),是連續的內存區域;堆向高地址擴展(即」向上生長」),是不連續的內存區域。這是因爲系統用鏈表來存儲空閒內存地址,天然不連續,而鏈表從低地址向高地址遍歷。

③空間大小:棧頂地址和棧的最大容量由系統預先規定(一般默認2M或10M);堆的大小則受限於計算機系統中有效的虛擬內存,32位Linux系統中堆內存可達2.9G空間。

④存儲內容:棧在函數調用時,首先壓入主調函數中下條指令(函數調用語句的下條可執行語句)的地址,而後是函數實參,而後是被調函數的局部變量。本次調用結束後,局部變量先出棧,而後是參數,最後棧頂指針指向最開始存的指令地址,程序由該點繼續運行下條可執行語句。堆一般在頭部用一個字節存放其大小,堆用於存儲生存期與函數調用無關的數據,具體內容由程序員安排。

⑤分配方式:棧可靜態分配或動態分配。靜態分配由編譯器完成,如局部變量的分配。動態分配由alloca函數在棧上申請空間,用完後自動釋放。堆只能動態分配且手工釋放。

⑥分配效率:棧由計算機底層提供支持:分配專門的寄存器存放棧地址,壓棧出棧由專門的指令執行,所以效率較高。堆由函數庫提供,機制複雜,效率比棧低得多。Windows系統中VirtualAlloc可直接在進程地址空間中分配一塊內存,快速且靈活。

⑦分配後系統響應:只要棧剩餘空間大於所申請空間,系統將爲程序提供內存,不然報告異常提示棧溢出。

操做系統爲堆維護一個記錄空閒內存地址的鏈表。當系統收到程序的內存分配申請時,會遍歷該鏈表尋找第一個空間大於所申請空間的堆結點,而後將該結點從空閒結點鏈表中刪除,並將該結點空間分配給程序。若無足夠大小的空間(可能因爲內存碎片太多),有可能調用系統功能去增長程序數據段的內存空間,以便有機會分到足夠大小的內存,而後進行返回。,大多數系統會在該內存空間首地址處記錄本次分配的內存大小,供後續的釋放函數(如free/delete)正確釋放本內存空間。

此外,因爲找到的堆結點大小不必定正好等於申請的大小,系統會自動將多餘的部分從新放入空閒鏈表中。

⑧碎片問題:棧不會存在碎片問題,由於棧是先進後出的隊列,內存塊彈出棧以前,在其上面的後進的棧內容已彈出。而頻繁申請釋放操做會形成堆內存空間的不連續,從而形成大量碎片,使程序效率下降。

可見,堆容易形成內存碎片;因爲沒有專門的系統支持,效率很低;因爲可能引起用戶態和內核態切換,內存申請的代價更爲昂貴。因此棧在程序中應用最普遍,函數調用也利用棧來完成,調用過程當中的參數、返回地址、棧基指針和局部變量等都採用棧的方式存放。因此,建議儘可能使用棧,僅在分配大量或大塊內存空間時使用堆。

使用棧和堆時應避免越界發生,不然可能程序崩潰或破壞程序堆、棧結構,產生意想不到的後果。

bss段

BSS(Block Started by Symbol)段中一般存放程序中如下符號:

  • 未初始化的全局變量和靜態局部變量
  • 初始值爲0的全局變量和靜態局部變量(依賴於編譯器實現)
  • 未定義且初值不爲0的符號(該初值即common block的大小)

    C語言中,未顯式初始化的靜態分配變量被初始化爲0(算術類型)或空指針(指針類型)。因爲程序加載時,BSS會被操做系統清零,因此未賦初值或初值爲0的全局變量都在BSS中。BSS段僅爲未初始化的靜態分配變量預留位置,在目標文件中並不佔據空間,這樣可減小目標文件體積。但程序運行時需爲變量分配內存空間,故目標文件必須記錄全部未初始化的靜態分配變量大小總和(經過start_bss和end_bss地址寫入機器代碼)。當加載器(loader)加載程序時,將爲BSS段分配的內存初始化爲0。在嵌入式軟件中,進入main()函數以前BSS段被C運行時系統映射到初始化爲全零的內存(效率較高)。

    注意,儘管均放置於BSS段,但初值爲0的全局變量是強符號,而未初始化的全局變量是弱符號。若其餘地方已定義同名的強符號(初值可能非0),則弱符號與之連接時不會引發重定義錯誤,但運行時的初值可能並不是指望值(會被強符號覆蓋)。所以,定義全局變量時,若只有本文件使用,則儘可能使用static關鍵字修飾;不然須要爲全局變量定義賦初值(哪怕0值),保證該變量爲強符號,以便連接時發現變量名衝突,而不是被未知值覆蓋。

    某些編譯器將未初始化的全局變量保存在common段,連接時再將其放入BSS段。在編譯階段可經過-fno-common選項來禁止將未初始化的全局變量放入common段。

    此外,因爲目標文件不含BSS段,故程序燒入存儲器(Flash)後BSS段地址空間內容未知。U-Boot啓動過程當中,將U-Boot的Stage2代碼(一般位於lib_xxxx/board.c文件)搬遷(拷貝)到SDRAM空間後必須人爲添加清零BSS段的代碼,而不可依賴於Stage2代碼中變量定義時賦0值。

數據段(Data)

數據段一般用於存放程序中已初始化且初值不爲0的全局變量和靜態局部變量。數據段屬於靜態內存分配(靜態存儲區),可讀可寫。

數據段保存在目標文件中(在嵌入式系統裏通常固化在鏡像文件中),其內容由程序初始化。例如,對於全局變量int gVar = 10,必須在目標文件數據段中保存10這個數據,而後在程序加載時複製到相應的內存。

數據段與BSS段的區別以下: 
 1) BSS段不佔用物理文件尺寸,但佔用內存空間;數據段佔用物理文件,也佔用內存空間。
 對於大型數組如int ar0[10000] = {1, 2, 3, ...}和int ar1[10000],ar1放在BSS段,只記錄共有10000*4個字節須要初始化爲0,而不是像ar0那樣記錄每一個數據一、二、3...,此時BSS爲目標文件所節省的磁盤空間至關可觀。
 2) 當程序讀取數據段的數據時,系統會出發缺頁故障,從而分配相應的物理內存;當程序讀取BSS段的數據時,內核會將其轉到一個全零頁面,不會發生缺頁故障,也不會爲其分配相應的物理內存。
 運行時數據段和BSS段的整個區段一般稱爲數據區。某些資料中「數據段」指代數據段 + BSS段 + 堆。

代碼段(text)

代碼段也稱正文段或文本段,一般用於存放程序執行代碼(即CPU執行的機器指令)。通常C語言執行語句都編譯成機器代碼保存在代碼段。一般代碼段是可共享的,所以頻繁執行的程序只須要在內存中擁有一份拷貝便可。代碼段一般屬於只讀,以防止其餘程序意外地修改其指令(對該段的寫操做將致使段錯誤)。某些架構也容許代碼段爲可寫,即容許修改程序。

代碼段指令根據程序設計流程依次執行,對於順序指令,只會執行一次(每一個進程);如有反覆,則需使用跳轉指令;若進行遞歸,則須要藉助棧來實現。

代碼段指令中包括操做碼和操做對象(或對象地址引用)。若操做對象是當即數(具體數值),將直接包含在代碼中;如果局部數據,將在棧區分配空間,而後引用該數據地址;若位於BSS段和數據段,一樣引用該數據地址。

代碼段最容易受優化措施影響。

參考:
https://www.cnblogs.com/clove...

相關文章
相關標籤/搜索