題意:求本質不一樣的迴文串(大整數)的數字和node
由迴文樹的性質可知貢獻只在首次進入某個新節點時產生c++
那麼只需由pos和len算出距離把左邊右邊刪掉再算好base重複\(O(n)\)次便可spa
位移那段寫的略微凌亂..code
#include<bits/stdc++.h> #define rep(i,j,k) for(int i=j;i<=k;i++) #define rrep(i,j,k) for(int i=j;i>=k;i--) #define println(a) printf("%lld\n",(ll)(a)) #define printbk(a) printf("%lld ",(ll)(a)) typedef long long ll; using namespace std; const int MAXN = 2e6+11; const ll oo = 0x3f3f3f3f3f3f3f3f; const ll ooo= 0x3f3f3f3f; const int MOD = 1000000007; ll read(){ ll x=0,f=1;register char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } char str[MAXN]; ll _10[MAXN],inv10[MAXN]; ll sum[MAXN],rsum[MAXN]; ll ANS; int llen; typedef long long LL; LL pow_mod(LL a, LL b, LL p){//a的b次方求餘p LL ret = 1; while(b){ if(b & 1) ret = (ret * a) % p; a = (a * a) % p; b >>= 1; } return ret; } LL fermat(LL a, LL p){//費馬求a關於b的逆元 return pow_mod(a, p-2, p); } struct PT{ char s[MAXN]; int last,cur,tot; int son[MAXN][10]; int fail[MAXN],len[MAXN]; void init(){ s[0]=-1; last=cur=0; tot=1; rep(i,0,9) son[0][i]=son[1][i]=0; len[0]=0,len[1]=-1; fail[0]=1;fail[1]=0; } int node(int l){ ++tot; rep(i,0,9) son[tot][i]=0; fail[tot]=0; len[tot]=l; return tot; } int getfail(int x){ while(s[cur-len[x]-1]^s[cur]) x=fail[x]; return x; } void add(int pos){ s[++cur]=str[pos]; int t=getfail(last); int c=str[pos]-'0'; if(son[t][c]==0){ int o=node(len[t]+2); fail[o]=son[getfail(fail[t])][c]; son[t][c]=o; ll lo=((sum[llen]-rsum[pos-(len[t]+2)+1])%MOD+MOD)%MOD; ll hi=rsum[pos+1]; ll all=lo+hi; if(all>=MOD) all%=MOD; ll t=((sum[llen]-all)%MOD+MOD)%MOD; if(t>=MOD) t%=MOD; if(llen-pos+1-1>0)ANS=ANS+t*inv10[llen-pos+1-1]%MOD; else ANS=ANS+t; if(ANS>=MOD) ANS%=MOD; } last=son[t][c]; } }pt; int main(){ _10[0]=1; rep(i,1,MAXN-1){ _10[i]=_10[i-1]*10; if(_10[i]>=MOD) _10[i]%=MOD; inv10[i]=fermat(_10[i],MOD); } while(~scanf("%s",str+1)){ memset(sum,0,sizeof sum); memset(rsum,0,sizeof rsum); ANS=0; sum[0]=0; pt.init(); llen=strlen(str+1); rep(i,1,llen){ sum[i]=sum[i-1]*10+(int)(str[i]-'0'); if(sum[i]>=MOD) sum[i]%=MOD; } rsum[llen+1]=0; rrep(i,llen,1){ rsum[i]=rsum[i+1]+(int)(str[i]-'0')*_10[llen-i]%MOD; if(rsum[i]>=MOD) rsum[i]%=MOD; } ANS=0; rep(i,1,llen) pt.add(i); println(ANS%MOD); } return 0; }