聊聊flink DataStream的connect操做

本文主要研究一下flink DataStream的connect操做java

DataStream.connect

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/DataStream.javaapache

@Public
public class DataStream<T> {

    //......

    public <R> ConnectedStreams<T, R> connect(DataStream<R> dataStream) {
        return new ConnectedStreams<>(environment, this, dataStream);
    }

    @PublicEvolving
    public <R> BroadcastConnectedStream<T, R> connect(BroadcastStream<R> broadcastStream) {
        return new BroadcastConnectedStream<>(
                environment,
                this,
                Preconditions.checkNotNull(broadcastStream),
                broadcastStream.getBroadcastStateDescriptor());
    }

    //......
}
  • DataStream的connect操做建立的是ConnectedStreams或BroadcastConnectedStream,它用了兩個泛型,即不要求兩個dataStream的element是同一類型

ConnectedStreams

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/ConnectedStreams.javaapi

@Public
public class ConnectedStreams<IN1, IN2> {

    protected final StreamExecutionEnvironment environment;
    protected final DataStream<IN1> inputStream1;
    protected final DataStream<IN2> inputStream2;

    protected ConnectedStreams(StreamExecutionEnvironment env, DataStream<IN1> input1, DataStream<IN2> input2) {
        this.environment = requireNonNull(env);
        this.inputStream1 = requireNonNull(input1);
        this.inputStream2 = requireNonNull(input2);
    }

    public StreamExecutionEnvironment getExecutionEnvironment() {
        return environment;
    }

    public DataStream<IN1> getFirstInput() {
        return inputStream1;
    }

    public DataStream<IN2> getSecondInput() {
        return inputStream2;
    }

    public TypeInformation<IN1> getType1() {
        return inputStream1.getType();
    }

    public TypeInformation<IN2> getType2() {
        return inputStream2.getType();
    }

    public ConnectedStreams<IN1, IN2> keyBy(int keyPosition1, int keyPosition2) {
        return new ConnectedStreams<>(this.environment, inputStream1.keyBy(keyPosition1),
                inputStream2.keyBy(keyPosition2));
    }

    public ConnectedStreams<IN1, IN2> keyBy(int[] keyPositions1, int[] keyPositions2) {
        return new ConnectedStreams<>(environment, inputStream1.keyBy(keyPositions1),
                inputStream2.keyBy(keyPositions2));
    }

    public ConnectedStreams<IN1, IN2> keyBy(String field1, String field2) {
        return new ConnectedStreams<>(environment, inputStream1.keyBy(field1),
                inputStream2.keyBy(field2));
    }

    public ConnectedStreams<IN1, IN2> keyBy(String[] fields1, String[] fields2) {
        return new ConnectedStreams<>(environment, inputStream1.keyBy(fields1),
                inputStream2.keyBy(fields2));
    }

    public ConnectedStreams<IN1, IN2> keyBy(KeySelector<IN1, ?> keySelector1, KeySelector<IN2, ?> keySelector2) {
        return new ConnectedStreams<>(environment, inputStream1.keyBy(keySelector1),
                inputStream2.keyBy(keySelector2));
    }

    public <KEY> ConnectedStreams<IN1, IN2> keyBy(
            KeySelector<IN1, KEY> keySelector1,
            KeySelector<IN2, KEY> keySelector2,
            TypeInformation<KEY> keyType) {
        return new ConnectedStreams<>(
            environment,
            inputStream1.keyBy(keySelector1, keyType),
            inputStream2.keyBy(keySelector2, keyType));
    }

    public <R> SingleOutputStreamOperator<R> map(CoMapFunction<IN1, IN2, R> coMapper) {

        TypeInformation<R> outTypeInfo = TypeExtractor.getBinaryOperatorReturnType(
            coMapper,
            CoMapFunction.class,
            0,
            1,
            2,
            TypeExtractor.NO_INDEX,
            getType1(),
            getType2(),
            Utils.getCallLocationName(),
            true);

        return transform("Co-Map", outTypeInfo, new CoStreamMap<>(inputStream1.clean(coMapper)));

    }

    public <R> SingleOutputStreamOperator<R> flatMap(
            CoFlatMapFunction<IN1, IN2, R> coFlatMapper) {

        TypeInformation<R> outTypeInfo = TypeExtractor.getBinaryOperatorReturnType(
            coFlatMapper,
            CoFlatMapFunction.class,
            0,
            1,
            2,
            TypeExtractor.NO_INDEX,
            getType1(),
            getType2(),
            Utils.getCallLocationName(),
            true);

        return transform("Co-Flat Map", outTypeInfo, new CoStreamFlatMap<>(inputStream1.clean(coFlatMapper)));
    }

    @PublicEvolving
    public <R> SingleOutputStreamOperator<R> process(
            CoProcessFunction<IN1, IN2, R> coProcessFunction) {

        TypeInformation<R> outTypeInfo = TypeExtractor.getBinaryOperatorReturnType(
            coProcessFunction,
            CoProcessFunction.class,
            0,
            1,
            2,
            TypeExtractor.NO_INDEX,
            getType1(),
            getType2(),
            Utils.getCallLocationName(),
            true);

        return process(coProcessFunction, outTypeInfo);
    }

    @Internal
    public <R> SingleOutputStreamOperator<R> process(
            CoProcessFunction<IN1, IN2, R> coProcessFunction,
            TypeInformation<R> outputType) {

        TwoInputStreamOperator<IN1, IN2, R> operator;

        if ((inputStream1 instanceof KeyedStream) && (inputStream2 instanceof KeyedStream)) {
            operator = new KeyedCoProcessOperator<>(inputStream1.clean(coProcessFunction));
        } else {
            operator = new CoProcessOperator<>(inputStream1.clean(coProcessFunction));
        }

        return transform("Co-Process", outputType, operator);
    }

    @PublicEvolving
    public <R> SingleOutputStreamOperator<R> transform(String functionName,
            TypeInformation<R> outTypeInfo,
            TwoInputStreamOperator<IN1, IN2, R> operator) {

        // read the output type of the input Transforms to coax out errors about MissingTypeInfo
        inputStream1.getType();
        inputStream2.getType();

        TwoInputTransformation<IN1, IN2, R> transform = new TwoInputTransformation<>(
                inputStream1.getTransformation(),
                inputStream2.getTransformation(),
                functionName,
                operator,
                outTypeInfo,
                environment.getParallelism());

        if (inputStream1 instanceof KeyedStream && inputStream2 instanceof KeyedStream) {
            KeyedStream<IN1, ?> keyedInput1 = (KeyedStream<IN1, ?>) inputStream1;
            KeyedStream<IN2, ?> keyedInput2 = (KeyedStream<IN2, ?>) inputStream2;

            TypeInformation<?> keyType1 = keyedInput1.getKeyType();
            TypeInformation<?> keyType2 = keyedInput2.getKeyType();
            if (!(keyType1.canEqual(keyType2) && keyType1.equals(keyType2))) {
                throw new UnsupportedOperationException("Key types if input KeyedStreams " +
                        "don't match: " + keyType1 + " and " + keyType2 + ".");
            }

            transform.setStateKeySelectors(keyedInput1.getKeySelector(), keyedInput2.getKeySelector());
            transform.setStateKeyType(keyType1);
        }

        @SuppressWarnings({ "unchecked", "rawtypes" })
        SingleOutputStreamOperator<R> returnStream = new SingleOutputStreamOperator(environment, transform);

        getExecutionEnvironment().addOperator(transform);

        return returnStream;
    }
}
  • ConnectedStreams提供了keyBy方法用於指定兩個stream的keySelector,提供了map、flatMap、process、transform操做,其中前三個操做最後都是調用transform操做
  • transform操做接收TwoInputStreamOperator類型的operator,而後轉換爲SingleOutputStreamOperator
  • map操做接收CoMapFunction,flatMap操做接收CoFlatMapFunction,process操做接收CoProcessFunction

CoMapFunction

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/functions/co/CoMapFunction.javaapp

@Public
public interface CoMapFunction<IN1, IN2, OUT> extends Function, Serializable {

    OUT map1(IN1 value) throws Exception;

    OUT map2(IN2 value) throws Exception;
}
  • CoMapFunction繼承了Function,它定義了map一、map2方法

CoFlatMapFunction

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/functions/co/CoFlatMapFunction.javaui

@Public
public interface CoFlatMapFunction<IN1, IN2, OUT> extends Function, Serializable {

    void flatMap1(IN1 value, Collector<OUT> out) throws Exception;

    void flatMap2(IN2 value, Collector<OUT> out) throws Exception;
}
  • CoFlatMapFunction繼承了Function,它定義了map一、map2方法,與CoMapFunction不一樣的是,CoFlatMapFunction的map一、map2方法多了Collector參數

CoProcessFunction

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/functions/co/CoProcessFunction.javathis

@PublicEvolving
public abstract class CoProcessFunction<IN1, IN2, OUT> extends AbstractRichFunction {

    private static final long serialVersionUID = 1L;

    public abstract void processElement1(IN1 value, Context ctx, Collector<OUT> out) throws Exception;

    public abstract void processElement2(IN2 value, Context ctx, Collector<OUT> out) throws Exception;

    public void onTimer(long timestamp, OnTimerContext ctx, Collector<OUT> out) throws Exception {}

    public abstract class Context {

        public abstract Long timestamp();

        public abstract TimerService timerService();

        public abstract <X> void output(OutputTag<X> outputTag, X value);
    }

    public abstract class OnTimerContext extends Context {
        /**
         * The {@link TimeDomain} of the firing timer.
         */
        public abstract TimeDomain timeDomain();
    }
}
  • CoProcessFunction繼承了AbstractRichFunction,它定義了processElement一、processElement2方法,與CoFlatMapFunction不一樣的是,它定義的這兩個方法多了Context參數
  • CoProcessFunction定義了Context及OnTimerContext,在processElement一、processElement2方法能夠訪問到Context,Context提供了timestamp、timerService、output方法
  • CoProcessFunction與CoFlatMapFunction不一樣的另一點是它能夠使用TimerService來註冊timer,而後在onTimer方法裏頭實現響應的邏輯

小結

  • DataStream的connect操做建立的是ConnectedStreams或BroadcastConnectedStream,它用了兩個泛型,即不要求兩個dataStream的element是同一類型
  • ConnectedStreams提供了keyBy方法用於指定兩個stream的keySelector,提供了map、flatMap、process、transform操做,其中前三個操做最後都是調用transform操做;transform操做接收TwoInputStreamOperator類型的operator,而後轉換爲SingleOutputStreamOperator;map操做接收CoMapFunction,flatMap操做接收CoFlatMapFunction,process操做接收CoProcessFunction
  • CoFlatMapFunction與CoMapFunction不一樣的是,CoFlatMapFunction的map一、map2方法多了Collector參數;CoProcessFunction定義了processElement一、processElement2方法,與CoFlatMapFunction不一樣的是,它定義的這兩個方法多了Context參數;CoProcessFunction與CoFlatMapFunction不一樣的另一點是它能夠使用TimerService來註冊timer,而後在onTimer方法裏頭實現響應的邏輯

doc

相關文章
相關標籤/搜索