python3,所需模塊請自行補齊python
# coding=utf8 import pygame import random from pygame.locals import * import numpy as np from collections import deque import tensorflow as tf # http://blog.topspeedsnail.com/archives/10116 import cv2 # http://blog.topspeedsnail.com/archives/4755 BLACK = (0, 0, 0) WHITE = (255, 255, 255) SCREEN_SIZE = [320, 400] BAR_SIZE = [50, 5] BALL_SIZE = [15, 15] # 神經網絡的輸出 MOVE_STAY = [1, 0, 0] MOVE_LEFT = [0, 1, 0] MOVE_RIGHT = [0, 0, 1] class Game(object): def __init__(self): pygame.init() self.clock = pygame.time.Clock() self.screen = pygame.display.set_mode(SCREEN_SIZE) pygame.display.set_caption('Simple Game') self.ball_pos_x = SCREEN_SIZE[0] // 2 - BALL_SIZE[0] / 2 self.ball_pos_y = SCREEN_SIZE[1] // 2 - BALL_SIZE[1] / 2 self.ball_dir_x = -1 # -1 = left 1 = right self.ball_dir_y = -1 # -1 = up 1 = down self.ball_pos = pygame.Rect( self.ball_pos_x, self.ball_pos_y, BALL_SIZE[0], BALL_SIZE[1]) self.bar_pos_x = SCREEN_SIZE[0] // 2 - BAR_SIZE[0] // 2 self.bar_pos = pygame.Rect( self.bar_pos_x, SCREEN_SIZE[1] - BAR_SIZE[1], BAR_SIZE[0], BAR_SIZE[1]) # action是MOVE_STAY、MOVE_LEFT、MOVE_RIGHT # ai控制棒子左右移動;返回遊戲界面像素數和對應的獎勵。(像素->獎勵->強化棒子往獎勵高的方向移動) def step(self, action): if action == MOVE_LEFT: self.bar_pos_x = self.bar_pos_x - 2 elif action == MOVE_RIGHT: self.bar_pos_x = self.bar_pos_x + 2 else: pass if self.bar_pos_x < 0: self.bar_pos_x = 0 if self.bar_pos_x > SCREEN_SIZE[0] - BAR_SIZE[0]: self.bar_pos_x = SCREEN_SIZE[0] - BAR_SIZE[0] self.screen.fill(BLACK) self.bar_pos.left = self.bar_pos_x pygame.draw.rect(self.screen, WHITE, self.bar_pos) self.ball_pos.left += self.ball_dir_x * 2 self.ball_pos.bottom += self.ball_dir_y * 3 pygame.draw.rect(self.screen, WHITE, self.ball_pos) if self.ball_pos.top <= 0 or self.ball_pos.bottom >= (SCREEN_SIZE[1] - BAR_SIZE[1] + 1): self.ball_dir_y = self.ball_dir_y * -1 if self.ball_pos.left <= 0 or self.ball_pos.right >= (SCREEN_SIZE[0]): self.ball_dir_x = self.ball_dir_x * -1 reward = 0 if self.bar_pos.top <= self.ball_pos.bottom and (self.bar_pos.left < self.ball_pos.right and self.bar_pos.right > self.ball_pos.left): reward = 1 # 擊中獎勵 elif self.bar_pos.top <= self.ball_pos.bottom and (self.bar_pos.left > self.ball_pos.right or self.bar_pos.right < self.ball_pos.left): reward = -1 # 沒擊中懲罰 # 得到遊戲界面像素 screen_image = pygame.surfarray.array3d(pygame.display.get_surface()) pygame.display.update() # 返回遊戲界面像素和對應的獎勵 return reward, screen_image # learning_rate LEARNING_RATE = 0.99 # 更新梯度 INITIAL_EPSILON = 1.0 FINAL_EPSILON = 0.05 # 測試觀測次數 EXPLORE = 500000 OBSERVE = 50000 # 存儲過往經驗大小 REPLAY_MEMORY = 500000 BATCH = 100 # 輸出層神經元數。表明3種操做-MOVE_STAY:[1, 0, 0] MOVE_LEFT:[0, 1, 0] MOVE_RIGHT:[0, 0, 1] output = 3 input_image = tf.placeholder("float", [None, 80, 100, 4]) # 遊戲像素 action = tf.placeholder("float", [None, output]) # 操做 # 定義CNN-卷積神經網絡 參考:http://blog.topspeedsnail.com/archives/10451 def convolutional_neural_network(input_image): weights = {'w_conv1': tf.Variable(tf.zeros([8, 8, 4, 32])), 'w_conv2': tf.Variable(tf.zeros([4, 4, 32, 64])), 'w_conv3': tf.Variable(tf.zeros([3, 3, 64, 64])), 'w_fc4': tf.Variable(tf.zeros([3456, 784])), 'w_out': tf.Variable(tf.zeros([784, output]))} biases = {'b_conv1': tf.Variable(tf.zeros([32])), 'b_conv2': tf.Variable(tf.zeros([64])), 'b_conv3': tf.Variable(tf.zeros([64])), 'b_fc4': tf.Variable(tf.zeros([784])), 'b_out': tf.Variable(tf.zeros([output]))} conv1 = tf.nn.relu(tf.nn.conv2d(input_image, weights['w_conv1'], strides=[ 1, 4, 4, 1], padding="VALID") + biases['b_conv1']) conv2 = tf.nn.relu(tf.nn.conv2d(conv1, weights['w_conv2'], strides=[ 1, 2, 2, 1], padding="VALID") + biases['b_conv2']) conv3 = tf.nn.relu(tf.nn.conv2d(conv2, weights['w_conv3'], strides=[ 1, 1, 1, 1], padding="VALID") + biases['b_conv3']) conv3_flat = tf.reshape(conv3, [-1, 3456]) fc4 = tf.nn.relu(tf.matmul(conv3_flat, weights['w_fc4']) + biases['b_fc4']) output_layer = tf.matmul(fc4, weights['w_out']) + biases['b_out'] return output_layer # 深度強化學習入門: https://www.nervanasys.com/demystifying-deep-reinforcement-learning/ # 訓練神經網絡 def train_neural_network(input_image): predict_action = convolutional_neural_network(input_image) argmax = tf.placeholder("float", [None, output]) gt = tf.placeholder("float", [None]) action = tf.reduce_sum(tf.multiply(predict_action, argmax), reduction_indices=1) cost = tf.reduce_mean(tf.square(action - gt)) optimizer = tf.train.AdamOptimizer(1e-6).minimize(cost) game = Game() D = deque() _, image = game.step(MOVE_STAY) # 轉換爲灰度值 image = cv2.cvtColor(cv2.resize(image, (100, 80)), cv2.COLOR_BGR2GRAY) # 轉換爲二值 ret, image = cv2.threshold(image, 1, 255, cv2.THRESH_BINARY) input_image_data = np.stack((image, image, image, image), axis=2) with tf.Session() as sess: sess.run(tf.initialize_all_variables()) saver = tf.train.Saver() n = 0 epsilon = INITIAL_EPSILON while True: action_t = predict_action.eval( feed_dict={input_image: [input_image_data]})[0] argmax_t = np.zeros([output], dtype=np.int) if(random.random() <= INITIAL_EPSILON): maxIndex = random.randrange(output) else: maxIndex = np.argmax(action_t) argmax_t[maxIndex] = 1 if epsilon > FINAL_EPSILON: epsilon -= (INITIAL_EPSILON - FINAL_EPSILON) / EXPLORE # for event in pygame.event.get(): macOS須要事件循環,不然白屏 # if event.type == QUIT: # pygame.quit() # sys.exit() reward, image = game.step(list(argmax_t)) image = cv2.cvtColor(cv2.resize( image, (100, 80)), cv2.COLOR_BGR2GRAY) ret, image = cv2.threshold(image, 1, 255, cv2.THRESH_BINARY) image = np.reshape(image, (80, 100, 1)) input_image_data1 = np.append( image, input_image_data[:, :, 0:3], axis=2) D.append((input_image_data, argmax_t, reward, input_image_data1)) if len(D) > REPLAY_MEMORY: D.popleft() if n > OBSERVE: minibatch = random.sample(D, BATCH) input_image_data_batch = [d[0] for d in minibatch] argmax_batch = [d[1] for d in minibatch] reward_batch = [d[2] for d in minibatch] input_image_data1_batch = [d[3] for d in minibatch] gt_batch = [] out_batch = predict_action.eval( feed_dict={input_image: input_image_data1_batch}) for i in range(0, len(minibatch)): gt_batch.append( reward_batch[i] + LEARNING_RATE * np.max(out_batch[i])) optimizer.run(feed_dict={ gt: gt_batch, argmax: argmax_batch, input_image: input_image_data_batch}) input_image_data = input_image_data1 n = n + 1 if n % 10000 == 0: saver.save(sess, 'game.cpk', global_step=n) # 保存模型 print(n, "epsilon:", epsilon, " ", "action:", maxIndex, " ", "reward:", reward) train_neural_network(input_image)