JavaShuo
欄目
標籤
REALM: Retrieval-Augmented Language Model Pre Training 解讀
時間 2021-01-04
原文
原文鏈接
知識就是力量 培根 背景 去年可以說是語言模型快速發展的一年,BERT、XLNET、Albert等等模型不斷刷新各個NLP榜單。在NLP榜單中比較引人注目的應該屬於閱讀理解型的任務,例如SQuAD等等。以SQuAD爲例,模型需要閱讀一段給定的文本,然後回答幾個問題,問題如果存在答案,答案一定可以在文章中找到。所以說雖然叫閱讀理解,但其實和序列標註有點相像,是在給定序列中標出答案段。而這篇論文針
>>阅读原文<<
相關文章
1.
REALM: Retrieval-Augmented Language Model Pre-Training
2.
REALM: Retrieval-Augmented Language Model Pre-Training 翻譯
3.
《REALM: Retrieval-Augmented Language Model Pre-Training》論文筆記
4.
UniLM: Unified Language Model Pre-training for Natural Language Understanding and Generation
5.
CLUECorpus2020: A Large-scale Chinese Corpus for Pre-training Language Model
6.
Bert: Pre-training of Deep Bidirectional Transformers for Language Understanding
7.
Bert:論文閱讀-BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
8.
論文閱讀筆記:BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
9.
文獻閱讀筆記—Improving Language Understanding by Generative Pre-Training
10.
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
更多相關文章...
•
RSS
元素
-
RSS 教程
•
RSS 閱讀器
-
RSS 教程
•
JDK13 GA發佈:5大特性解讀
•
Scala 中文亂碼解決
相關標籤/搜索
language
pre
realm
training
model
解讀
flink training
model&animation
閱讀理解
源碼解讀
MyBatis教程
Spring教程
NoSQL教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
Mud Puddles ( bfs )
2.
ReSIProcate環境搭建
3.
SNAT(IP段)和配置網絡服務、網絡會話
4.
第8章 Linux文件類型及查找命令實踐
5.
AIO介紹(八)
6.
中年轉行互聯網,原動力、計劃、行動(中)
7.
詳解如何讓自己的網站/APP/應用支持IPV6訪問,從域名解析配置到服務器配置詳細步驟完整。
8.
PHP 5 構建系統
9.
不看後悔系列!Rocket MQ 使用排查指南(附網盤鏈接)
10.
如何簡單創建虛擬機(CentoOS 6.10)
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
REALM: Retrieval-Augmented Language Model Pre-Training
2.
REALM: Retrieval-Augmented Language Model Pre-Training 翻譯
3.
《REALM: Retrieval-Augmented Language Model Pre-Training》論文筆記
4.
UniLM: Unified Language Model Pre-training for Natural Language Understanding and Generation
5.
CLUECorpus2020: A Large-scale Chinese Corpus for Pre-training Language Model
6.
Bert: Pre-training of Deep Bidirectional Transformers for Language Understanding
7.
Bert:論文閱讀-BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
8.
論文閱讀筆記:BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
9.
文獻閱讀筆記—Improving Language Understanding by Generative Pre-Training
10.
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
>>更多相關文章<<