A text analyzer which is based on machine learning that can analyze text.java
So far, it supports hot word extracting, text classification, part of speech tagging, named entity recognition, chinese word segment, extracting address, synonym, text clustering, word2vec model, edit distance, chinese word segment, sentence similarity.git
extracting hot words from a text.github
extracting address from a text.bash
synonym can be recognized併發
SVM Classificator機器學習
This analyzer supports to classify text by svm. it involves vectoring the text. We can train the samples and then make a classification by the model.分佈式
For convenience,the model,tfidf and vector will be stored.學習
kmeans clustering && xmeans clusteringui
This analyzer supports to clustering text by kmeans and xmeans.this
vsm clustering
This analyzer supports to clustering text by vsm.
part of speech tagging
It's implemented by HMM model and decoder by viterbi algorithm.
google word2vec model
This analyzer supports to use word2vec model.
chinese word segment
This analyzer supports to do chinese word segment.
edit distance
This analyzer supports calculating edit distance on char level or word level.
sentence similarity
This analyzer supports calculating similarity between two sentences.
just simple like this
long docId = TextIndexer.index(text);
複製代碼
HotWordExtractor extractor = new HotWordExtractor();
List<Result> list = extractor.extract(0, 20, false);
if (list != null) for (Result s : list)
System.out.println(s.getTerm() + " : " + s.getFrequency() + " : " + s.getScore());
複製代碼
a result contains term,frequency and score.
失業證 : 1 : 0.31436604
戶口 : 1 : 0.30099702
單位 : 1 : 0.29152703
提取 : 1 : 0.27927202
領取 : 1 : 0.27581802
職工 : 1 : 0.27381304
勞動 : 1 : 0.27370203
關係 : 1 : 0.27080503
本市 : 1 : 0.27080503
終止 : 1 : 0.27080503
複製代碼
String str ="xxxx";
AddressExtractor extractor = new AddressExtractor();
List<String> list = extractor.extract(str);
複製代碼
SVMTrainer trainer = new SVMTrainer();
trainer.train();
複製代碼
double[] data = trainer.getWordVector(text);
trainer.predict(data);
複製代碼
List<String> list = DataReader.readContent(KMeansCluster.DATA_FILE);
int[] labels = new KMeansCluster().learn(list);
複製代碼
List<String> list = DataReader.readContent(VSMCluster.DATA_FILE);
List<String> labels = new VSMCluster().learn(list);
複製代碼
HMMModel model = new HMMModel();
model.train();
ViterbiDecoder decoder = new ViterbiDecoder(model);
decoder.decode(words);
複製代碼
MITIE is an information extractor library comes up with MIT NLP term , which github is https://github.com/mit-nlp/MITIE .
train total_word_feature_extractor
Prepare your word set, you can put them into a txt file in the directory of 'data'.
And then do things below:
git clone https://github.com/mit-nlp/MITIE.git
cd tools
cd wordrep
mkdir build
cd build
cmake ..
cmake --build . --config Release
wordrep -e data
複製代碼
Finally you get the total_word_feature_extractor model.
train ner_model
We can use Java\C++\Python to train the ner model, anyway we must use the total_word_feature_extractor model to train it.
if Java,
NerTrainer nerTrainer = new NerTrainer("model/mitie_model/total_word_feature_extractor.dat");
複製代碼
if C++,
ner_trainer trainer("model/mitie_model/total_word_feature_extractor.dat");
複製代碼
if Python,
trainer = ner_trainer("model/mitie_model/total_word_feature_extractor.dat")
複製代碼
build shared library
Do commands below:
cd mitielib
D:\MITIE\mitielib>mkdir build
D:\MITIE\mitielib>cd build
D:\MITIE\mitielib\build>cmake ..
D:\MITIE\mitielib\build>cmake --build . --config Release --target install
複製代碼
Then we get these below:
-- Install configuration: "Release"
-- Installing: D:/MITIE/mitielib/java/../javamitie.dll
-- Installing: D:/MITIE/mitielib/java/../javamitie.jar
-- Up-to-date: D:/MITIE/mitielib/java/../msvcp140.dll
-- Up-to-date: D:/MITIE/mitielib/java/../vcruntime140.dll
-- Up-to-date: D:/MITIE/mitielib/java/../concrt140.dll
複製代碼
we must set the word2vec's path system parameter when startup,just like this -Dword2vec.path=D:\Google_word2vec_zhwiki1710_300d.bin
.
Word2Vec vec = Word2Vec.getInstance();
System.out.println("狗|貓: " + vec.wordSimilarity("狗", "貓"));
複製代碼
DictSegment segment = new DictSegment();
System.out.println(segment.seg("我是中國人"));
複製代碼
char level,
CharEditDistance cdd = new CharEditDistance();
cdd.getEditDistance("what", "where");
cdd.getEditDistance("咱們是中國人", "他們是日本人吖,四貴子");
cdd.getEditDistance("是我", "我是");
複製代碼
word level,
List list1 = new ArrayList<String>();
list1.add(new EditBlock("計算機",""));
list1.add(new EditBlock("多少",""));
list1.add(new EditBlock("錢",""));
List list2 = new ArrayList<String>();
list2.add(new EditBlock("電腦",""));
list2.add(new EditBlock("多少",""));
list2.add(new EditBlock("錢",""));
ed.getEditDistance(list1, list2);
複製代碼
String s1 = "咱們是中國人";
String s2 = "他們是日本人,四貴子";
SentenceSimilarity ss = new SentenceSimilarity();
System.out.println(ss.getSimilarity(s1, s2));
s1 = "咱們是中國人";
s2 = "咱們是中國人";
System.out.println(ss.getSimilarity(s1, s2));
複製代碼
-------------推薦閱讀------------
跟我交流,向我提問:
公衆號的菜單已分爲「讀書總結」、「分佈式」、「機器學習」、「深度學習」、「NLP」、「Java深度」、「Java併發核心」、「JDK源碼」、「Tomcat內核」等,可能有一款適合你的胃口。
歡迎關注: