本文徹底利用numpy實現一個簡單的BP神經網絡,因爲是作regression而不是classification,所以在這裏輸出層選取的激勵函數就是f(x)=x。BP神經網絡的具體原理此處再也不介紹。
node
import numpy as np
class NeuralNetwork(object):
def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate):
# Set number of nodes in input, hidden and output layers.設定輸入層、隱藏層和輸出層的node數目
self.input_nodes = input_nodes
self.hidden_nodes = hidden_nodes
self.output_nodes = output_nodes
# Initialize weights,初始化權重和學習速率
self.weights_input_to_hidden = np.random.normal(0.0, self.hidden_nodes**-0.5,
( self.hidden_nodes, self.input_nodes))
self.weights_hidden_to_output = np.random.normal(0.0, self.output_nodes**-0.5,
(self.output_nodes, self.hidden_nodes))
self.lr = learning_rate
# 隱藏層的激勵函數爲sigmoid函數,Activation function is the sigmoid function
self.activation_function = (lambda x: 1/(1 np.exp(-x)))
def train(self, inputs_list, targets_list):
# Convert inputs list to 2d array
inputs = np.array(inputs_list, ndmin=2).T # 輸入向量的shape爲 [feature_diemension, 1]
targets = np.array(targets_list, ndmin=2).T
# 向前傳播,Forward pass
# TODO: Hidden layer
hidden_inputs = np.dot(self.weights_input_to_hidden, inputs) # signals into hidden layer
hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer
# 輸出層,輸出層的激勵函數就是 y = x
final_inputs = np.dot(self.weights_hidden_to_output, hidden_outputs) # signals into final output layer
final_outputs = final_inputs # signals from final output layer
### 反向傳播 Backward pass,使用梯度降低對權重進行更新 ###
# 輸出偏差
# Output layer error is the difference between desired target and actual output.
output_errors = (targets_list-final_outputs)
# 反向傳播偏差 Backpropagated error
# errors propagated to the hidden layer
hidden_errors = np.dot(output_errors, self.weights_hidden_to_output)*(hidden_outputs*(1-hidden_outputs)).T
# 更新權重 Update the weights
# 更新隱藏層與輸出層之間的權重 update hidden-to-output weights with gradient descent step
self.weights_hidden_to_output = output_errors * hidden_outputs.T * self.lr
# 更新輸入層與隱藏層之間的權重 update input-to-hidden weights with gradient descent step
self.weights_input_to_hidden = (inputs * hidden_errors * self.lr).T
# 進行預測
def run(self, inputs_list):
# Run a forward pass through the network
inputs = np.array(inputs_list, ndmin=2).T
#### 實現向前傳播 Implement the forward pass here ####
# 隱藏層 Hidden layer
hidden_inputs = np.dot(self.weights_input_to_hidden, inputs) # signals into hidden layer
hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer
# 輸出層 Output layer
final_inputs = np.dot(self.weights_hidden_to_output, hidden_outputs) # signals into final output layer
final_outputs = final_inputs # signals from final output layer
return final_outputs網絡