用Spark學習FP Tree算法和PrefixSpan算法

FP Tree算法原理總結PrefixSpan算法原理總結中,咱們對FP Tree和PrefixSpan這兩種關聯算法的原理作了總結,這裏就從實踐的角度介紹如何使用這兩個算法。因爲scikit-learn中沒有關聯算法的類庫,而Spark MLlib有,本文的使用以Spark MLlib做爲使用環境。html

1、1. Spark MLlib關聯算法概述

    在Spark MLlib中,也只實現了兩種關聯算法,即咱們的FP Tree和PrefixSpan,而像Apriori,GSP之類的關聯算法是沒有的。而這些算法支持Python,Java,Scala和R的接口。因爲前面的實踐篇咱們都是基於Python,本文的後面的介紹和使用也會使用MLlib的Python接口。python

     Spark MLlib關聯算法基於Python的接口在pyspark.mllib.fpm包中。FP Tree算法對應的類是pyspark.mllib.fpm.FPGrowth(如下簡稱FPGrowth類),從Spark1.4開始纔有。而PrefixSpan算法對應的類是pyspark.mllib.fpm.PrefixSpan(如下簡稱PrefixSpan類),從Spark1.6開始纔有。所以若是你的學習環境的Spark低於1.6的話,是不能正常的運行下面的例子的。git

     Spark MLlib也提供了讀取關聯算法訓練模型的類,分別是 pyspark.mllib.fpm.FPGrowthModel和pyspark.mllib.fpm.PrefixSpanModel。這兩個類能夠把咱們以前保存的FP Tree和PrefixSpan訓練模型讀出來。github

2、Spark MLlib關聯算法參數介紹

    對於FPGrowth類,使用它的訓練函數train主要須要輸入三個參數:數據項集data,支持度閾值minSupport和數據並行運行時的數據分塊數numPartitions。對於支持度閾值minSupport,它的取值大小影響最後的頻繁項集的集合大小,支持度閾值越大,則最後的頻繁項集數目越少,默認值0.3。而數據並行運行時的數據分塊數numPartitions主要在分佈式環境的時候有用,若是你是單機Spark,則能夠忽略這個參數。算法

    對於PrefixSpan類, 使用它的訓練函數train主要須要輸入四個參數:序列項集data,支持度閾值minSupport, 最長頻繁序列的長度maxPatternLength 和最大單機投影數據庫的項數maxLocalProjDBSize。支持度閾值minSupport的定義和FPGrowth類相似,惟一差異是閾值默認值爲0.1。maxPatternLength限制了最長的頻繁序列的長度,越小則最後的頻繁序列數越少。maxLocalProjDBSize參數是爲了保護單機內存不被撐爆。若是隻是是少許數據的學習,能夠忽略這個參數。數據庫

    從上面的描述能夠看出,使用FP Tree和PrefixSpan算法沒有什麼門檻。學習的時候能夠經過控制支持度閾值minSupport控制頻繁序列的結果。而maxPatternLength能夠幫忙PrefixSpan算法篩除太長的頻繁序列。在分佈式的大數據環境下,則須要考慮FPGrowth算法的數據分塊數numPartitions,以及PrefixSpan算法的最大單機投影數據庫的項數maxLocalProjDBSize。微信

3、Spark FP Tree和PrefixSpan算法使用示例

    這裏咱們用一個具體的例子來演示如何使用Spark FP Tree和PrefixSpan算法挖掘頻繁項集和頻繁序列。app

    完整代碼參見個人github: https://github.com/nickchen121/machinelearning/blob/master/classic-machine-learning/fp_tree_prefixspan.ipynb分佈式

    要使用 Spark 來學習FP Tree和PrefixSpan算法,首先須要要確保你安裝好了Hadoop和Spark(版本不小於1.6),並設置好了環境變量。通常咱們都是在ipython notebook(jupyter notebook)中學習,因此最好把基於notebook的Spark環境搭好。固然不搭notebook的Spark環境也沒有關係,只是每次須要在運行前設置環境變量。函數

    若是你沒有搭notebook的Spark環境,則須要先跑下面這段代碼。固然,若是你已經搭好了,則下面這段代碼不用跑了。

import os
import sys

#下面這些目錄都是你本身機器的Spark安裝目錄和Java安裝目錄
os.environ['SPARK_HOME'] = "C:/Tools/spark-1.6.1-bin-hadoop2.6/"

sys.path.append("C:/Tools/spark-1.6.1-bin-hadoop2.6/bin")
sys.path.append("C:/Tools/spark-1.6.1-bin-hadoop2.6/python")
sys.path.append("C:/Tools/spark-1.6.1-bin-hadoop2.6/python/pyspark")
sys.path.append("C:/Tools/spark-1.6.1-bin-hadoop2.6/python/lib")
sys.path.append("C:/Tools/spark-1.6.1-bin-hadoop2.6/python/lib/pyspark.zip")
sys.path.append("C:/Tools/spark-1.6.1-bin-hadoop2.6/python/lib/py4j-0.9-src.zip")
sys.path.append("C:/Program Files (x86)/Java/jdk1.8.0_102")

from pyspark import SparkContext
from pyspark import SparkConf


sc = SparkContext("local","testing")

    在跑算法以前,建議輸出Spark Context以下,若是能夠正常打印內存地址,則說明Spark的運行環境搞定了。

print sc

    好比個人輸出是:

<;pyspark.context.SparkContext object at 0x07D9E2B0>;
    如今咱們來用數據來跑下FP Tree算法,爲了和FP Tree算法原理總結中的分析比照,咱們使用和原理篇同樣的數據項集,同樣的支持度閾值20%,來訓練數據。代碼以下:

from  pyspark.mllib.fpm import FPGrowth
data = [["A", "B", "C", "E", "F","O"], ["A", "C", "G"], ["E","I"], ["A", "C","D","E","G"], ["A", "C", "E","G","L"],
       ["E","J"],["A","B","C","E","F","P"],["A","C","D"],["A","C","E","G","M"],["A","C","E","G","N"]]
rdd = sc.parallelize(data, 2)
#支持度閾值爲20%
model = FPGrowth.train(rdd, 0.2, 2)

    咱們接着來看看頻繁項集的結果,代碼以下:

sorted(model.freqItemsets().collect())

    輸出即爲全部 知足要求的頻繁項集,你們能夠和原理篇裏面分析時產生的頻繁項集比較。代碼輸出以下:

[FreqItemset(items=[u'A'], freq=8),
FreqItemset(items=[u'B'], freq=2),
FreqItemset(items=[u'B', u'A'], freq=2),
FreqItemset(items=[u'B', u'C'], freq=2),
FreqItemset(items=[u'B', u'C', u'A'], freq=2),
FreqItemset(items=[u'B', u'E'], freq=2),
FreqItemset(items=[u'B', u'E', u'A'], freq=2),
FreqItemset(items=[u'B', u'E', u'C'], freq=2),
FreqItemset(items=[u'B', u'E', u'C', u'A'], freq=2),
FreqItemset(items=[u'C'], freq=8),
FreqItemset(items=[u'C', u'A'], freq=8),
FreqItemset(items=[u'D'], freq=2),
FreqItemset(items=[u'D', u'A'], freq=2),
FreqItemset(items=[u'D', u'C'], freq=2),
FreqItemset(items=[u'D', u'C', u'A'], freq=2),
FreqItemset(items=[u'E'], freq=8),
FreqItemset(items=[u'E', u'A'], freq=6),
FreqItemset(items=[u'E', u'C'], freq=6),
FreqItemset(items=[u'E', u'C', u'A'], freq=6),
FreqItemset(items=[u'F'], freq=2),
FreqItemset(items=[u'F', u'A'], freq=2),
FreqItemset(items=[u'F', u'B'], freq=2),
FreqItemset(items=[u'F', u'B', u'A'], freq=2),
FreqItemset(items=[u'F', u'B', u'C'], freq=2),
FreqItemset(items=[u'F', u'B', u'C', u'A'], freq=2),
FreqItemset(items=[u'F', u'B', u'E'], freq=2),
FreqItemset(items=[u'F', u'B', u'E', u'A'], freq=2),
FreqItemset(items=[u'F', u'B', u'E', u'C'], freq=2),
FreqItemset(items=[u'F', u'B', u'E', u'C', u'A'], freq=2),
FreqItemset(items=[u'F', u'C'], freq=2),
FreqItemset(items=[u'F', u'C', u'A'], freq=2),
FreqItemset(items=[u'F', u'E'], freq=2),
FreqItemset(items=[u'F', u'E', u'A'], freq=2),
FreqItemset(items=[u'F', u'E', u'C'], freq=2),
FreqItemset(items=[u'F', u'E', u'C', u'A'], freq=2),
FreqItemset(items=[u'G'], freq=5),
FreqItemset(items=[u'G', u'A'], freq=5),
FreqItemset(items=[u'G', u'C'], freq=5),
FreqItemset(items=[u'G', u'C', u'A'], freq=5),
FreqItemset(items=[u'G', u'E'], freq=4),
FreqItemset(items=[u'G', u'E', u'A'], freq=4),
FreqItemset(items=[u'G', u'E', u'C'], freq=4),
FreqItemset(items=[u'G', u'E', u'C', u'A'], freq=4)]
    接着咱們來看看使用PrefixSpan類來挖掘頻繁序列。爲了和PrefixSpan算法原理總結中的分析比照,咱們使用和原理篇同樣的數據項集,同樣的支持度閾值50%,同時將最長頻繁序列程度設置爲4,來訓練數據。代碼以下:

from  pyspark.mllib.fpm import PrefixSpan
data = [
   [['a'],["a", "b", "c"], ["a","c"],["d"],["c", "f"]],
   [["a","d"], ["c"],["b", "c"], ["a", "e"]],
   [["e", "f"], ["a", "b"], ["d","f"],["c"],["b"]],
   [["e"], ["g"],["a", "f"],["c"],["b"],["c"]]
   ]
rdd = sc.parallelize(data, 2)
model = PrefixSpan.train(rdd, 0.5,4)

   咱們接着來看看頻繁序列的結果,代碼以下: 

sorted(model.freqSequences().collect())

   輸出即爲全部知足要求的頻繁序列,你們能夠和原理篇裏面分析時產生的頻繁序列比較。代碼輸出以下: 

[FreqSequence(sequence=[[u'a']], freq=4),
FreqSequence(sequence=[[u'a'], [u'a']], freq=2),
FreqSequence(sequence=[[u'a'], [u'b']], freq=4),
FreqSequence(sequence=[[u'a'], [u'b'], [u'a']], freq=2),
FreqSequence(sequence=[[u'a'], [u'b'], [u'c']], freq=2),
FreqSequence(sequence=[[u'a'], [u'b', u'c']], freq=2),
FreqSequence(sequence=[[u'a'], [u'b', u'c'], [u'a']], freq=2),
FreqSequence(sequence=[[u'a'], [u'c']], freq=4),
FreqSequence(sequence=[[u'a'], [u'c'], [u'a']], freq=2),
FreqSequence(sequence=[[u'a'], [u'c'], [u'b']], freq=3),
FreqSequence(sequence=[[u'a'], [u'c'], [u'c']], freq=3),
FreqSequence(sequence=[[u'a'], [u'd']], freq=2),
FreqSequence(sequence=[[u'a'], [u'd'], [u'c']], freq=2),
FreqSequence(sequence=[[u'a'], [u'f']], freq=2),
FreqSequence(sequence=[[u'b']], freq=4),
FreqSequence(sequence=[[u'b'], [u'a']], freq=2),
FreqSequence(sequence=[[u'b'], [u'c']], freq=3),
FreqSequence(sequence=[[u'b'], [u'd']], freq=2),
FreqSequence(sequence=[[u'b'], [u'd'], [u'c']], freq=2),
FreqSequence(sequence=[[u'b'], [u'f']], freq=2),
FreqSequence(sequence=[[u'b', u'a']], freq=2),
FreqSequence(sequence=[[u'b', u'a'], [u'c']], freq=2),
FreqSequence(sequence=[[u'b', u'a'], [u'd']], freq=2),
FreqSequence(sequence=[[u'b', u'a'], [u'd'], [u'c']], freq=2),
FreqSequence(sequence=[[u'b', u'a'], [u'f']], freq=2),
FreqSequence(sequence=[[u'b', u'c']], freq=2),
FreqSequence(sequence=[[u'b', u'c'], [u'a']], freq=2),
FreqSequence(sequence=[[u'c']], freq=4),
FreqSequence(sequence=[[u'c'], [u'a']], freq=2),
FreqSequence(sequence=[[u'c'], [u'b']], freq=3),
FreqSequence(sequence=[[u'c'], [u'c']], freq=3),
FreqSequence(sequence=[[u'd']], freq=3),
FreqSequence(sequence=[[u'd'], [u'b']], freq=2),
FreqSequence(sequence=[[u'd'], [u'c']], freq=3),
FreqSequence(sequence=[[u'd'], [u'c'], [u'b']], freq=2),
FreqSequence(sequence=[[u'e']], freq=3),
FreqSequence(sequence=[[u'e'], [u'a']], freq=2),
FreqSequence(sequence=[[u'e'], [u'a'], [u'b']], freq=2),
FreqSequence(sequence=[[u'e'], [u'a'], [u'c']], freq=2),
FreqSequence(sequence=[[u'e'], [u'a'], [u'c'], [u'b']], freq=2),
FreqSequence(sequence=[[u'e'], [u'b']], freq=2),
FreqSequence(sequence=[[u'e'], [u'b'], [u'c']], freq=2),
FreqSequence(sequence=[[u'e'], [u'c']], freq=2),
FreqSequence(sequence=[[u'e'], [u'c'], [u'b']], freq=2),
FreqSequence(sequence=[[u'e'], [u'f']], freq=2),
FreqSequence(sequence=[[u'e'], [u'f'], [u'b']], freq=2),
FreqSequence(sequence=[[u'e'], [u'f'], [u'c']], freq=2),
FreqSequence(sequence=[[u'e'], [u'f'], [u'c'], [u'b']], freq=2),
FreqSequence(sequence=[[u'f']], freq=3),
FreqSequence(sequence=[[u'f'], [u'b']], freq=2),
FreqSequence(sequence=[[u'f'], [u'b'], [u'c']], freq=2),
FreqSequence(sequence=[[u'f'], [u'c']], freq=2),
FreqSequence(sequence=[[u'f'], [u'c'], [u'b']], freq=2)]
  在訓練出模型後,咱們也能夠調用save方法將模型存到磁盤,而後在須要的時候經過FPGrowthModel或PrefixSpanModel將模型讀出來。

  以上就是用Spark學習FP Tree算法和PrefixSpan算法的全部內容,但願能夠幫到你們。

 

(歡迎轉載,轉載請註明出處。歡迎溝通交流: 微信:nickchen121)

相關文章
相關標籤/搜索