官網信息:http://docs.h2o.ai/h2o/latest-stable/h2o-docs/downloading.html#download-and-runhtml
[Anliven@localhost ~]$ uname -a Linux localhost.localdomain 3.10.0-957.el7.x86_64 #1 SMP Thu Nov 8 23:39:32 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux [Anliven@localhost ~]$ [Anliven@localhost ~]$ cat /etc/system-release CentOS Linux release 7.5.1804 (Core) [Anliven@localhost ~]$ [Anliven@localhost ~]$ java -version openjdk version "1.8.0_161" OpenJDK Runtime Environment (build 1.8.0_161-b14) OpenJDK 64-Bit Server VM (build 25.161-b14, mixed mode) [Anliven@localhost ~]$
經過java -jar h2o.jar -ip <IP_Address> -port <PortNumber>
命令運行H2Ojava
[Anliven@localhost h2o-3.24.0.5]$ pwd /home/Anliven/Downloads/h2o-3.24.0.5 [Anliven@localhost h2o-3.24.0.5]$ [Anliven@localhost h2o-3.24.0.5]$ ll total 127012 drwxr-xr-x 3 Anliven Anliven 18 Jun 19 08:19 bindings -rw-r--r-- 1 Anliven Anliven 130056596 Jun 19 08:19 h2o.jar drwxr-xr-x 2 Anliven Anliven 47 Jun 19 08:19 python drwxr-xr-x 2 Anliven Anliven 33 Jun 19 08:19 R [Anliven@localhost h2o-3.24.0.5]$ [Anliven@localhost h2o-3.24.0.5]$ java -jar h2o.jar -ip 192.168.16.101 -port 54321 06-21 23:44:41.564 192.168.16.101:54321 4039 main INFO: ----- H2O started ----- 06-21 23:44:41.582 192.168.16.101:54321 4039 main INFO: Build git branch: rel-yates 06-21 23:44:41.582 192.168.16.101:54321 4039 main INFO: Build git hash: b9cd4d5bcd44a4949ca8c677c5e54c10ee72c968 06-21 23:44:41.583 192.168.16.101:54321 4039 main INFO: Build git describe: jenkins-3.24.0.4-66-gb9cd4d5 06-21 23:44:41.583 192.168.16.101:54321 4039 main INFO: Build project version: 3.24.0.5 06-21 23:44:41.583 192.168.16.101:54321 4039 main INFO: Build age: 2 days 06-21 23:44:41.583 192.168.16.101:54321 4039 main INFO: Built by: 'jenkins' 06-21 23:44:41.583 192.168.16.101:54321 4039 main INFO: Built on: '2019-06-18 23:52:14' 06-21 23:44:41.583 192.168.16.101:54321 4039 main INFO: Found H2O Core extensions: [Watchdog, XGBoost, KrbStandalone] 06-21 23:44:41.584 192.168.16.101:54321 4039 main INFO: Processed H2O arguments: [-ip, 192.168.16.101, -port, 54321] 06-21 23:44:41.584 192.168.16.101:54321 4039 main INFO: Java availableProcessors: 4 06-21 23:44:41.584 192.168.16.101:54321 4039 main INFO: Java heap totalMemory: 240.0 MB 06-21 23:44:41.584 192.168.16.101:54321 4039 main INFO: Java heap maxMemory: 3.45 GB 06-21 23:44:41.584 192.168.16.101:54321 4039 main INFO: Java version: Java 1.8.0_161 (from Oracle Corporation) 06-21 23:44:41.584 192.168.16.101:54321 4039 main INFO: JVM launch parameters: [] 06-21 23:44:41.585 192.168.16.101:54321 4039 main INFO: OS version: Linux 3.10.0-957.el7.x86_64 (amd64) 06-21 23:44:41.585 192.168.16.101:54321 4039 main INFO: Machine physical memory: 15.51 GB 06-21 23:44:41.585 192.168.16.101:54321 4039 main INFO: Machine locale: en_US 06-21 23:44:41.585 192.168.16.101:54321 4039 main INFO: X-h2o-cluster-id: 1561131880800 06-21 23:44:41.585 192.168.16.101:54321 4039 main INFO: User name: 'Anliven' 06-21 23:44:41.585 192.168.16.101:54321 4039 main INFO: IPv6 stack selected: false 06-21 23:44:41.585 192.168.16.101:54321 4039 main INFO: Network interface is down: name:virbr0 (virbr0) 06-21 23:44:41.585 192.168.16.101:54321 4039 main INFO: Possible IP Address: enp0s8 (enp0s8), fe80:0:0:0:cfdd:6281:f738:fba%enp0s8 06-21 23:44:41.586 192.168.16.101:54321 4039 main INFO: Possible IP Address: enp0s8 (enp0s8), 192.168.16.101 06-21 23:44:41.586 192.168.16.101:54321 4039 main INFO: Possible IP Address: enp0s3 (enp0s3), fe80:0:0:0:c48f:c289:276:2308%enp0s3 06-21 23:44:41.586 192.168.16.101:54321 4039 main INFO: Possible IP Address: enp0s3 (enp0s3), 10.0.2.15 06-21 23:44:41.586 192.168.16.101:54321 4039 main INFO: Possible IP Address: lo (lo), 0:0:0:0:0:0:0:1%lo 06-21 23:44:41.586 192.168.16.101:54321 4039 main INFO: Possible IP Address: lo (lo), 127.0.0.1 06-21 23:44:41.586 192.168.16.101:54321 4039 main INFO: H2O node running in unencrypted mode. 06-21 23:44:41.588 192.168.16.101:54321 4039 main INFO: Internal communication uses port: 54322 06-21 23:44:41.588 192.168.16.101:54321 4039 main INFO: Listening for HTTP and REST traffic on http://192.168.16.101:54321/ 06-21 23:44:41.589 192.168.16.101:54321 4039 main INFO: H2O cloud name: 'Anliven' on /192.168.16.101:54321, static configuration based on -flatfile null 06-21 23:44:41.589 192.168.16.101:54321 4039 main INFO: If you have trouble connecting, try SSH tunneling from your local machine (e.g., via port 55555): 06-21 23:44:41.589 192.168.16.101:54321 4039 main INFO: 1. Open a terminal and run 'ssh -L 55555:localhost:54321 Anliven@192.168.16.101' 06-21 23:44:41.589 192.168.16.101:54321 4039 main INFO: 2. Point your browser to http://localhost:55555 06-21 23:44:42.307 192.168.16.101:54321 4039 main INFO: Log dir: '/tmp/h2o-Anliven/h2ologs' 06-21 23:44:42.307 192.168.16.101:54321 4039 main INFO: Cur dir: '/home/Anliven/Downloads/h2o-3.24.0.5' 06-21 23:44:42.321 192.168.16.101:54321 4039 main INFO: Subsystem for distributed import from HTTP/HTTPS successfully initialized 06-21 23:44:42.322 192.168.16.101:54321 4039 main INFO: HDFS subsystem successfully initialized 06-21 23:44:42.327 192.168.16.101:54321 4039 main INFO: S3 subsystem successfully initialized 06-21 23:44:42.352 192.168.16.101:54321 4039 main INFO: GCS subsystem successfully initialized 06-21 23:44:42.352 192.168.16.101:54321 4039 main INFO: Flow dir: '/home/Anliven/h2oflows' 06-21 23:44:42.372 192.168.16.101:54321 4039 main INFO: Cloud of size 1 formed [/192.168.16.101:54321] 06-21 23:44:42.386 192.168.16.101:54321 4039 main INFO: Registered parsers: [GUESS, ARFF, XLS, SVMLight, AVRO, PARQUET, CSV] 06-21 23:44:42.387 192.168.16.101:54321 4039 main INFO: Watchdog extension initialized 06-21 23:44:42.387 192.168.16.101:54321 4039 main INFO: XGBoost extension initialized 06-21 23:44:42.388 192.168.16.101:54321 4039 main INFO: KrbStandalone extension initialized 06-21 23:44:42.388 192.168.16.101:54321 4039 main INFO: Registered 3 core extensions in: 327ms 06-21 23:44:42.389 192.168.16.101:54321 4039 main INFO: Registered H2O core extensions: [Watchdog, XGBoost, KrbStandalone] 06-21 23:44:42.625 192.168.16.101:54321 4039 main INFO: Found XGBoost backend with library: xgboost4j_gpu 06-21 23:44:42.625 192.168.16.101:54321 4039 main INFO: XGBoost supported backends: [WITH_GPU, WITH_OMP] 06-21 23:44:42.788 192.168.16.101:54321 4039 main INFO: Registered: 174 REST APIs in: 399ms 06-21 23:44:42.788 192.168.16.101:54321 4039 main INFO: Registered REST API extensions: [Amazon S3, XGBoost, Algos, AutoML, Core V3, Core V4] 06-21 23:44:43.005 192.168.16.101:54321 4039 main INFO: Registered: 249 schemas in 216ms 06-21 23:44:43.005 192.168.16.101:54321 4039 main INFO: H2O started in 2195ms 06-21 23:44:43.005 192.168.16.101:54321 4039 main INFO: 06-21 23:44:43.005 192.168.16.101:54321 4039 main INFO: Open H2O Flow in your web browser: http://192.168.16.101:54321 06-21 23:44:43.006 192.168.16.101:54321 4039 main INFO:
處理方法:建議先檢查防火牆的設置。能夠關閉防火牆並設置爲開機不啓動,也能夠將H2O的web服務加入到防火牆的規則中。node
[root@localhost ~]# firewall-cmd --state running [root@localhost ~]# systemctl stop firewalld && systemctl disable firewalld Removed symlink /etc/systemd/system/multi-user.target.wants/firewalld.service. Removed symlink /etc/systemd/system/dbus-org.fedoraproject.FirewallD1.service. [root@localhost ~]#
執行java -jar h2o.jar
後,H2O的啓動日誌中顯示有「Failed to determine IP, falling back to localhost」信息
python
處理方法:經過java -jar h2o.jar -ip <IP_Address> -port <PortNumber>
命令指定IP地址和端口來運行H2O。ios
conda create -n h2o pip python=3.6 # 建立Python3.6的虛擬環境 conda activate h2o # 激活並進入虛擬環境 pip install -U h2o # 在虛擬環境中安裝h2o
(h2o) C:\Users\guowli>pip list Package Version ------------ -------- certifi 2019.3.9 chardet 3.0.4 colorama 0.4.1 future 0.17.1 h2o 3.24.0.5 idna 2.8 pip 19.1.1 requests 2.22.0 setuptools 41.0.1 tabulate 0.8.3 urllib3 1.25.3 wheel 0.33.4 wincertstore 0.2 (h2o) C:\Users\guowli>
(h2o) C:\Users\guowli>python Python 3.6.8 |Anaconda, Inc.| (default, Feb 21 2019, 18:30:04) [MSC v.1916 64 bit (AMD64)] on win32 Type "help", "copyright", "credits" or "license" for more information. >>> import h2o >>> h2o.init() Checking whether there is an H2O instance running at http://localhost:54321 ..... not found. Attempting to start a local H2O server... ; Java HotSpot(TM) Client VM (build 25.152-b16, mixed mode) C:\Office-Tools\Anaconda3\envs\h2o\lib\site-packages\h2o\backend\server.py:369: UserWarning: You have a 32-bit version of Java. H2O works best with 64-bit Java. Please download the latest 64-bit Java SE JDK from Oracle. warn(" You have a 32-bit version of Java. H2O works best with 64-bit Java.\n" Starting server from C:\Office-Tools\Anaconda3\envs\h2o\lib\site-packages\h2o\backend\bin\h2o.jar Ice root: C:\Users\guowli\AppData\Local\Temp\tmpydo64nu9 JVM stdout: C:\Users\guowli\AppData\Local\Temp\tmpydo64nu9\h2o_guowli_started_from_python.out JVM stderr: C:\Users\guowli\AppData\Local\Temp\tmpydo64nu9\h2o_guowli_started_from_python.err Server is running at http://127.0.0.1:54321 Connecting to H2O server at http://127.0.0.1:54321 ... successful. -------------------------- ------------------------------------------ H2O cluster uptime: 01 secs H2O cluster timezone: Asia/Shanghai H2O data parsing timezone: UTC H2O cluster version: 3.24.0.5 H2O cluster version age: 10 hours and 43 minutes H2O cluster name: H2O_from_python_guowli_76mkk5 H2O cluster total nodes: 1 H2O cluster free memory: 247.5 Mb H2O cluster total cores: 8 H2O cluster allowed cores: 8 H2O cluster status: accepting new members, healthy H2O connection url: http://127.0.0.1:54321 H2O connection proxy: H2O internal security: False H2O API Extensions: Amazon S3, Algos, AutoML, Core V3, Core V4 Python version: 3.6.8 final -------------------------- ------------------------------------------ >>>
>>> h2o.demo("glm") ------------------------------------------------------------------------------- Demo of H2O's Generalized Linear Estimator. This demo uploads a dataset to h2o, parses it, and shows a description. Then it divides the dataset into training and test sets, builds a GLM from the training set, and makes predictions for the test set. Finally, default performance metrics are displayed. ------------------------------------------------------------------------------- >>> # Connect to H2O >>> h2o.init() Checking whether there is an H2O instance running at http://localhost:54321 . connected. -------------------------- ------------------------------------------ H2O cluster uptime: 44 secs H2O cluster timezone: Asia/Shanghai H2O data parsing timezone: UTC H2O cluster version: 3.24.0.5 H2O cluster version age: 10 hours and 44 minutes H2O cluster name: H2O_from_python_guowli_76mkk5 H2O cluster total nodes: 1 H2O cluster free memory: 240.7 Mb H2O cluster total cores: 8 H2O cluster allowed cores: 8 H2O cluster status: locked, healthy H2O connection url: http://localhost:54321 H2O connection proxy: H2O internal security: False H2O API Extensions: Amazon S3, Algos, AutoML, Core V3, Core V4 Python version: 3.6.8 final -------------------------- ------------------------------------------ >>> # Upload the prostate dataset that comes included in the h2o python package >>> prostate = h2o.load_dataset("prostate") Parse progress: |█████████████████████████████████████████████████████████| 100% >>> # Print a description of the prostate data >>> prostate.describe() Rows:380 Cols:9 ID CAPSULE AGE RACE DPROS DCAPS PSA VOL GLEASON ------- ------------------ ------------------ ----------------- ------------------ ------------------ ------------------ ------------------ ------------------ ------------------ type int int int int int int real real int mins 1.0 0.0 43.0 0.0 1.0 1.0 0.3 0.0 0.0 mean 190.5 0.4026315789473684 66.03947368421049 1.0868421052631572 2.2710526315789488 1.1078947368421048 15.408631578947375 15.812921052631573 6.3842105263157904 maxs 380.0 1.0 79.0 2.0 4.0 2.0 139.7 97.6 9.0 sigma 109.84079387914127 0.4910743389630552 6.527071269173311 0.3087732580252793 1.0001076181502861 0.3106564493514939 19.99757266856046 18.347619967271175 1.0919533744261092 zeros 0 227 0 3 0 0 0 167 2 missing 0 0 0 0 0 0 0 0 0 0 1.0 0.0 65.0 1.0 2.0 1.0 1.4 0.0 6.0 1 2.0 0.0 72.0 1.0 3.0 2.0 6.7 0.0 7.0 2 3.0 0.0 70.0 1.0 1.0 2.0 4.9 0.0 6.0 3 4.0 0.0 76.0 2.0 2.0 1.0 51.2 20.0 7.0 4 5.0 0.0 69.0 1.0 1.0 1.0 12.3 55.9 6.0 5 6.0 1.0 71.0 1.0 3.0 2.0 3.3 0.0 8.0 6 7.0 0.0 68.0 2.0 4.0 2.0 31.9 0.0 7.0 7 8.0 0.0 61.0 2.0 4.0 2.0 66.7 27.2 7.0 8 9.0 0.0 69.0 1.0 1.0 1.0 3.9 24.0 7.0 9 10.0 0.0 68.0 2.0 1.0 2.0 13.0 0.0 6.0 >>> # Randomly split the dataset into ~70/30, training/test sets >>> train, test = prostate.split_frame(ratios=[0.70]) >>> # Convert the response columns to factors (for binary classification problems) >>> train["CAPSULE"] = train["CAPSULE"].asfactor() >>> test["CAPSULE"] = test["CAPSULE"].asfactor() >>> # Build a (classification) GLM >>> from h2o.estimators import H2OGeneralizedLinearEstimator >>> prostate_glm = H2OGeneralizedLinearEstimator(family="binomial", alpha=[0.5]) >>> prostate_glm.train(x=["AGE", "RACE", "PSA", "VOL", "GLEASON"], ... y="CAPSULE", training_frame=train) glm Model Build progress: |███████████████████████████████████████████████| 100% >>> # Show the model >>> prostate_glm.show() Model Details ============= H2OGeneralizedLinearEstimator : Generalized Linear Modeling Model Key: GLM_model_python_1560911750112_1 ModelMetricsBinomialGLM: glm ** Reported on train data. ** MSE: 0.16734436667135488 RMSE: 0.40907745803375045 LogLoss: 0.5023661857779066 Null degrees of freedom: 271 Residual degrees of freedom: 266 Null deviance: 368.556956020097 Residual deviance: 273.28720506318115 AIC: 285.28720506318115 AUC: 0.8176339285714287 pr_auc: 0.7776373382337975 Gini: 0.6352678571428574 Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.30277329744729137: 0 1 Error Rate ----- --- --- ------- ------------ 0 111 49 0.3063 (49.0/160.0) 1 20 92 0.1786 (20.0/112.0) Total 131 141 0.2537 (69.0/272.0) Maximum Metrics: Maximum metrics at their respective thresholds metric threshold value idx --------------------------- ----------- -------- ----- max f1 0.302773 0.727273 140 max f2 0.167286 0.807175 220 max f0point5 0.599644 0.742574 72 max accuracy 0.527291 0.768382 98 max precision 0.980771 1 0 max recall 0.0656329 1 252 max specificity 0.980771 1 0 max absolute_mcc 0.524337 0.516584 100 max min_per_class_accuracy 0.443324 0.741071 123 max mean_per_class_accuracy 0.302773 0.757589 140 Gains/Lift Table: Avg response rate: 41.18 %, avg score: 41.18 % group cumulative_data_fraction lower_threshold lift cumulative_lift response_rate score cumulative_response_rate cumulative_score capture_rate cumulative_capture_rate gain cumulative_gain -- ------- -------------------------- ----------------- -------- ----------------- --------------- --------- -------------------------- ------------------ -------------- ------------------------- -------- ----------------- 1 0.0110294 0.975592 2.42857 2.42857 1 0.979539 1 0.979539 0.0267857 0.0267857 142.857 142.857 2 0.0220588 0.966995 2.42857 2.42857 1 0.971859 1 0.975699 0.0267857 0.0535714 142.857 142.857 3 0.0330882 0.961389 2.42857 2.42857 1 0.964036 1 0.971811 0.0267857 0.0803571 142.857 142.857 4 0.0404412 0.949559 2.42857 2.42857 1 0.956522 1 0.969032 0.0178571 0.0982143 142.857 142.857 5 0.0514706 0.922488 2.42857 2.42857 1 0.938832 1 0.96256 0.0267857 0.125 142.857 142.857 6 0.102941 0.863277 2.2551 2.34184 0.928571 0.889015 0.964286 0.925788 0.116071 0.241071 125.51 134.184 7 0.150735 0.709532 1.49451 2.07317 0.615385 0.790488 0.853659 0.882888 0.0714286 0.3125 49.4505 107.317 8 0.202206 0.634824 1.73469 1.98701 0.714286 0.665299 0.818182 0.827502 0.0892857 0.401786 73.4694 98.7013 9 0.301471 0.584551 1.5291 1.83624 0.62963 0.606812 0.756098 0.754835 0.151786 0.553571 52.9101 83.6237 10 0.400735 0.495188 1.25926 1.69332 0.518519 0.537514 0.697248 0.701003 0.125 0.678571 25.9259 69.3316 11 0.5 0.338356 1.07937 1.57143 0.444444 0.433575 0.647059 0.647911 0.107143 0.785714 7.93651 57.1429 12 0.599265 0.250821 0.719577 1.43032 0.296296 0.2807 0.588957 0.587085 0.0714286 0.857143 -28.0423 43.0324 13 0.698529 0.214874 0.269841 1.26541 0.111111 0.235682 0.521053 0.537149 0.0267857 0.883929 -73.0159 26.5414 14 0.797794 0.174605 0.62963 1.18631 0.259259 0.196557 0.488479 0.494771 0.0625 0.946429 -37.037 18.6307 15 0.897059 0.076389 0.359788 1.09485 0.148148 0.115647 0.45082 0.452819 0.0357143 0.982143 -64.0212 9.48478 16 1 0.000108149 0.173469 1 0.0714286 0.0540133 0.411765 0.411765 0.0178571 1 -82.6531 0 Scoring History: timestamp duration iterations negative_log_likelihood objective -- ------------------- ---------- ------------ ------------------------- ----------- 2019-06-19 10:37:22 0.000 sec 0 184.278 0.677494 2019-06-19 10:37:22 0.012 sec 1 140.926 0.518611 2019-06-19 10:37:22 0.021 sec 2 136.838 0.503852 2019-06-19 10:37:22 0.022 sec 3 136.645 0.503224 2019-06-19 10:37:22 0.023 sec 4 136.644 0.503222 >>> # Predict on the test set and show the first ten predictions >>> predictions = prostate_glm.predict(test) >>> predictions.show() glm prediction progress: |████████████████████████████████████████████████| 100% predict p0 p1 --------- -------- --------- 1 0.457574 0.542426 1 0.189866 0.810134 1 0.419438 0.580562 1 0.521769 0.478231 1 0.375439 0.624561 0 0.927869 0.0721311 0 0.960693 0.0393066 0 0.700254 0.299746 0 0.714227 0.285773 0 0.778058 0.221942 [108 rows x 3 columns] >>> # Show default performance metrics >>> performance = prostate_glm.model_performance(test) >>> performance.show() ModelMetricsBinomialGLM: glm ** Reported on test data. ** MSE: 0.20621247932950715 RMSE: 0.45410624233708474 LogLoss: 0.5944711796848934 Null degrees of freedom: 107 Residual degrees of freedom: 102 Null deviance: 143.86304763240474 Residual deviance: 128.40577481193696 AIC: 140.40577481193696 AUC: 0.740444120859119 pr_auc: 0.6109686413835654 Gini: 0.4808882417182381 Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.2449261037363724: 0 1 Error Rate ----- --- --- ------- ------------ 0 38 29 0.4328 (29.0/67.0) 1 6 35 0.1463 (6.0/41.0) Total 44 64 0.3241 (35.0/108.0) Maximum Metrics: Maximum metrics at their respective thresholds metric threshold value idx --------------------------- ----------- -------- ----- max f1 0.244926 0.666667 63 max f2 0.132351 0.795918 80 max f0point5 0.285773 0.59387 54 max accuracy 0.594262 0.694444 23 max precision 0.996946 1 0 max recall 0.0644647 1 98 max specificity 0.996946 1 0 max absolute_mcc 0.244926 0.415635 63 max min_per_class_accuracy 0.325993 0.682927 48 max mean_per_class_accuracy 0.244926 0.710411 63 Gains/Lift Table: Avg response rate: 37.96 %, avg score: 37.52 % group cumulative_data_fraction lower_threshold lift cumulative_lift response_rate score cumulative_response_rate cumulative_score capture_rate cumulative_capture_rate gain cumulative_gain -- ------- -------------------------- ----------------- -------- ----------------- --------------- --------- -------------------------- ------------------ -------------- ------------------------- -------- ----------------- 1 0.0185185 0.979652 2.63415 2.63415 1 0.98867 1 0.98867 0.0487805 0.0487805 163.415 163.415 2 0.0277778 0.968501 2.63415 2.63415 1 0.969789 1 0.982377 0.0243902 0.0731707 163.415 163.415 3 0.037037 0.959393 2.63415 2.63415 1 0.960585 1 0.976929 0.0243902 0.097561 163.415 163.415 4 0.0462963 0.954581 2.63415 2.63415 1 0.954909 1 0.972525 0.0243902 0.121951 163.415 163.415 5 0.0555556 0.949862 2.63415 2.63415 1 0.953739 1 0.969394 0.0243902 0.146341 163.415 163.415 6 0.101852 0.799582 1.05366 1.91574 0.4 0.850374 0.727273 0.915294 0.0487805 0.195122 5.36585 91.5743 7 0.157407 0.658583 0.878049 1.5495 0.333333 0.710796 0.588235 0.843118 0.0487805 0.243902 -12.1951 54.9498 8 0.203704 0.598989 2.10732 1.67627 0.8 0.624421 0.636364 0.793414 0.097561 0.341463 110.732 67.6275 9 0.305556 0.538529 0.957871 1.43681 0.363636 0.562347 0.545455 0.716392 0.097561 0.439024 -4.21286 43.6807 10 0.398148 0.458199 1.31707 1.40896 0.5 0.510598 0.534884 0.668533 0.121951 0.560976 31.7073 40.8962 11 0.5 0.286173 1.67627 1.46341 0.636364 0.350458 0.555556 0.60374 0.170732 0.731707 67.6275 46.3415 12 0.601852 0.235707 1.19734 1.41839 0.454545 0.262231 0.538462 0.545946 0.121951 0.853659 19.7339 41.8386 13 0.694444 0.183515 0.526829 1.29951 0.2 0.212878 0.493333 0.501537 0.0487805 0.902439 -47.3171 29.9512 14 0.796296 0.095848 0.478936 1.19455 0.181818 0.143011 0.453488 0.455679 0.0487805 0.95122 -52.1064 19.4555 15 0.898148 0.0664361 0.239468 1.08625 0.0909091 0.0762976 0.412371 0.412656 0.0243902 0.97561 -76.0532 8.62459 16 1 0.000121128 0.239468 1 0.0909091 0.044715 0.37963 0.375181 0.0243902 1 -76.0532 0 ---- End of Demo ---- >>>